

Welcome to SWIFTsimIO’s documentation!

swiftsimio is a toolkit for reading SWIFT [http://www.swiftsim.com] data, an astrophysics
simulation code. It is used to ensure that everything that you read has a
symbolic unit attached, and can be used for visualisation. The final key
feature that it enables is the use of the cell metadata in SWIFT
snapshots to enable partial reading.

	Getting Started
	Requirements

	Installing

	Usage

	Loading Data
	Using metadata

	Reading particle data

	Named columns

	Non-unyt properties

	User-defined particle types

	Masking
	Spatial-only masking

	Full mask

	Writing subset of snapshot

	Visualisation
	Projection

	Slices

	Volume Rendering

	Tools

	VELOCIraptor Integration
	Example

	Creating Initial Conditions
	Example

	Statistics Files
	Example

	Command-line Utilities
	swiftsnap

	API Documentation
	swiftsimio package

	Indices and tables

Citing SWIFTsimIO

Please cite swiftsimio using the JOSS paper [https://joss.theoj.org/papers/10.21105/joss.02430]:

@article{Borrow2020,
 doi = {10.21105/joss.02430},
 url = {https://doi.org/10.21105/joss.02430},
 year = {2020},
 publisher = {The Open Journal},
 volume = {5},
 number = {52},
 pages = {2430},
 author = {Josh Borrow and Alexei Borrisov},
 title = {swiftsimio: A Python library for reading SWIFT data},
 journal = {Journal of Open Source Software}
}

If you use any of the subsampled projection backends, we ask that you cite our relevant
SPHERIC article [https://ui.adsabs.harvard.edu/abs/2021arXiv210605281B/abstract]. Note that citing the arXiv version here is recommended as the ADS
cannot track conference proceedings well.

@article{Borrow2021,
 title={Projecting SPH Particles in Adaptive Environments},
 author={Josh Borrow and Ashley J. Kelly},
 year={2021},
 eprint={2106.05281},
 archivePrefix={arXiv},
 primaryClass={astro-ph.GA}
}

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

The SWIFT astrophysical simulation code (http://swift.dur.ac.uk) is used
widely. There exists many ways of reading the data from SWIFT, which outputs
HDF5 files. These range from reading directly using h5py to using a
complex system such as yt; however these either are unsatisfactory
(e.g. a lack of unit information in reading HDF5), or too complex for most
use-cases. This (thin) wrapper provides an object-oriented API to read
(dynamically) data from SWIFT.

Getting set up with swiftsimio is easy; it (by design) has very few
requirements. There are a number of optional packages that you can install
to make the experience better and these are recommended. All requirements
are detailed below.

Requirements

This requires python v3.8.0 or higher. Unfortunately it is not
possible to support swiftsimio on versions of python lower than this.
It is important that you upgrade if you are still a python2 user.

Python packages

	numpy, required for the core numerical routines.

	h5py, required to read data from the SWIFT HDF5 output files.

	unyt, required for symbolic unit calculations (depends on sympy).

Optional packages

	numba, highly recommended should you wish to use the in-built visualisation
tools.

	scipy, required if you wish to generate smoothing lengths for particle types
that do not store this variable in the snapshots (e.g. dark matter)

	tqdm, required for progress bars for some long-running tasks. If not installed
no progress bar will be shown.

Installing

swiftsimio can be installed using the python packaging manager, pip,
or any other packaging manager that you wish to use:

pip install swiftsimio

Note that this will install any required packages for you.

To set up the code for development, first clone the latest master from GitHub:

git clone https://github.com/SWIFTSIM/swiftsimio.git

and install with pip using the -e flag,

cd swiftsimio

pip install -e .

Usage

There are many examples of using swiftsimio available in the
swiftsimio_examples [https://github.com/swiftsim/swiftsimio-examples] repository, which also includes examples for reading
older (e.g. EAGLE) datasets.

Example usage is shown below, which plots a density-temperature phase
diagram, with density and temperature given in CGS units:

import swiftsimio as sw

This loads all metadata but explicitly does _not_ read any particle data yet
data = sw.load("/path/to/swift/output")

import matplotlib.pyplot as plt

data.gas.densities.convert_to_cgs()
data.gas.temperatures.convert_to_cgs()

plt.loglog()

plt.scatter(
 data.gas.densities,
 data.gas.temperatures,
 s=1
)

plt.xlabel(fr"Gas density $\left[{data.gas.densities.units.latex_repr}\right]$")
plt.ylabel(fr"Gas temperature $\left[{data.gas.temperatures.units.latex_repr}\right]$")

plt.tight_layout()

plt.savefig("test_plot.png", dpi=300)

Don’t worry too much about this for now if you can’t understand it, we will
get into this much more heavily in the next section.

In the above it’s important to note the following:

	All metadata is read in when the swiftsimio.load() function is called.

	Only the density and temperatures (corresponding to the PartType0/Densities and
PartType0/Temperatures) datasets are read in.

	That data is only read in once the
swiftsimio.objects.cosmo_array.convert_to_cgs() method is called.

	swiftsimio.objects.cosmo_array.convert_to_cgs() converts data in-place;
i.e. it returns None.

	The data is cached and not re-read in when plt.scatter is called.

Loading Data

The main purpose of swiftsimio is to load data. This section will tell
you all about four main objects:

	swiftsimio.reader.SWIFTUnits, responsible for creating a correspondence between
the SWIFT units and unyt objects.

	swiftsimio.reader.SWIFTMetadata, responsible for loading any required information
from the SWIFT headers into python-readable data.

	swiftsimio.reader.SWIFTDataset, responsible for holding all particle data, and
keeping track of the above two objects.

	swiftsimio.reader.SWIFTParticleTypeMetadata, responsible for
cataloguing metadata just about individual particle types, like gas,
including what particle fields are present.

To get started, first locate any SWIFT data that you wish to analyse. If you
don’t have any handy, you can always download our test cosmological volume
at:

http://virgodb.cosma.dur.ac.uk/swift-webstorage/IOExamples/cosmo_volume_example.hdf5

with associated halo catalogue at

http://virgodb.cosma.dur.ac.uk/swift-webstorage/IOExamples/cosmo_volume_example.properties

which is needed should you wish to use the velociraptor integration library in the
visualisation examples.

To create your first instance of swiftsimio.reader.SWIFTDataset, you can
use the helper function swiftsimio.load as follows:

from swiftsimio import load

Of course, replace this path with your own snapshot should you be using
custom data.
data = load("cosmo_volume_example.hdf5")

The type of data is now swiftsimio.reader.SWIFTDataset. Have a
quick look around this dataset in an iPython shell, or a jupyter
notebook, and you will see that it contains several sub-objects:

	data.gas, which contains all information about gas particles in the
simulation.

	data.dark_matter, likewise containing information about the dark matter
particles in the simulation.

	data.metadata, an instance of swiftsimio.reader.SWIFTMetadata

	data.units, an instance of swiftsimio.reader.SWIFTUnits

Using metadata

Let’s begin by reading some useful metadata straight out of our
data.metadata object. For instance, we may want to know the box-size of
our simulation:

meta = data.metadata
boxsize = meta.boxsize

print(boxsize)

This will output [142.24751067 142.24751067 142.24751067] Mpc - note
the units that are attached. These units being attached to everything is one
of the key advantages of using swiftsimio. It is really easy to convert
between units; for instance if we want that box-size in kiloparsecs,

boxsize.convert_to_units("kpc")

print(boxsize)

Now outputting [142247.5106242 142247.5106242 142247.5106242] kpc. Neat!
This is all thanks to our tight integration with unyt. If you have more
complex units, it is often useful to specify them in terms of unyt
objects as follows:

import unyt

new_units = unyt.cm * unyt.Mpc / unyt.kpc
new_units.simplify()

boxsize.convert_to_units(new_units)

In general, we suggest using unyt unit objects rather than strings. You
can find more information about unyt on the unyt documentation website [https://unyt.readthedocs.io/en/stable/].

There is lots of metadata available through this object; the best way to see
this is by exploring the object using dir() in an interactive shell, but
as a summary:

	All metadata from the snapshot is available through many variables, for example
the meta.hydro_scheme property.

	The numbers of particles of different types are available through
meta.n_{gas,dark_matter,stars,black_holes}.

	Several pre-LaTeXed strings are available describing the configuration state
of the code, such as meta.hydro_info, meta.compiler_info.

	Several snapshot-wide parameters, such as meta.a (current scale factor),
meta.t (current time), meta.z (current redshift), meta.run_name
(the name of this run, specified in the SWIFT parameter file), and
meta.snapshot_date (a datetime object describing when the
snapshot was written to disk).

	If you have astropy installed, you can also use the metadata.cosmology
object, which is an astropy.cosmology.w0waCDM instance.

Reading particle data

To find out what particle properties are present in our snapshot, we can use
the instance of swiftsimio.reader.SWIFTMetadata, data.metadata,
which contains several instances of
swiftsimio.reader.SWIFTParticleTypeMetadata describing what kinds of
fields are present in gas or dark matter:

Note that gas_properties is an instance of SWIFTParticleTypeMetadata
print(data.metadata.gas_properties.field_names)

This will print a large list, like

['coordinates',
'densities',
...
'temperatures',
'velocities']

These individual attributes can be accessed through the object-oriented
interface, for instance,

x_gas = data.gas.coordinates
rho_gas = data.gas.densities
x_dm = data.dark_matter.coordinates

Only at this point is any information actually read from the snapshot, so far
we have only read three arrays into memory - in this case corresponding to
/PartType0/Coordinates, /PartType1/Coordinates, and
/PartType0/Densities.

This allows you to be quite lazy when writing scripts; you do not have to
write, for instance, a block at the start of the file with a
with h5py.File(...) as handle: and read all of the data at once, you can
simply access data whenever you need it through this predictable interface.

Just like the boxsize, these carry symbolic unyt units,

print(x_gas.units)

will output Mpc. We can again convert these to whatever units
we like. For instance, should we wish to convert our gas densities to solar
masses per cubic megaparsec,

new_density_units = unyt.Solar_Mass / unyt.Mpc**3

rho_gas.convert_to_units(new_density_units)

print(rho_gas.units.latex_repr)

which will output '\\frac{M_\\odot}{\\rm{Mpc}^{3}}'. This is a LaTeX
representation of those symbolic units that we just converted our data to -
this is very useful for making plots as it can ensure that your data and axes
labels always have consistent units.

Named columns

SWIFT can output custom metadata in SubgridScheme/NamedColumns for multi
dimensional tables containing columns that carry individual data. One common
example of this is the element mass fractions of gas and stellar particles.
These are then placed in an object hierarchy, as follows:

print(data.gas.element_mass_fractions)

This will output: Named columns instance with [‘hydrogen’, ‘helium’,
‘carbon’, ‘nitrogen’, ‘oxygen’, ‘neon’, ‘magnesium’, ‘silicon’, ‘iron’]
available for “Fractions of the particles’ masses that are in the given
element”

Then, to access individual columns (in this case element abundances):

Access the silicon abundance
data.gas.element_mass_fractions.silicon

Non-unyt properties

Each data array has some custom properties that are not present within the base
unyt.unyt_array class. We create our own version of this in
swiftsimio.objects.cosmo_array, which allows each dataset to contain
its own cosmology and name properties.

For instance, should you ever need to know what a dataset represents, you can
ask for a description:

print(rho_gas.name)

which will output Co-moving mass densities of the particles. They include
scale-factor information, too, through the cosmo_factor object,

Conversion factor to make the densities a physical quantity
print(rho_gas.cosmo_factor.a_factor)
physical_rho_gas = rho_gas.cosmo_factor.a_factor * rho_gas

Symbolic scale-factor expression
print(rho_gas.cosmo_factor.expr)

which will output 132651.002785671 and a**(-3.0). This is an easy way
to convert your co-moving values to physical ones.

An even easier way to convert your properties to physical is to use the
built-in to_physical and convert_to_physical methods, as follows:

physical_rho_gas = rho_gas.to_physical()

Convert in-place
rho_gas.convert_to_physical()

User-defined particle types

It is now possible to add user-defined particle types that are not already
present in the swiftsimio metadata. All you need to do is specify the
three names (see below) and then the particle datasets that you have provided
in SWIFT will be automatically read.

import swiftsimio as sw
import swiftsimio.metadata.particle as swp
from swiftsimio.objects import cosmo_factor, a

swp.particle_name_underscores[6] = "extratype"
swp.particle_name_class[6] = "Extratype"
swp.particle_name_text[6] = "Extratype"

data = sw.load(
 "extra_test.hdf5",
)

Masking

swiftsimio provides unique functionality (when compared to other
software packages that read HDF5 data) through its masking facility.

SWIFT snapshots contain cell metadata that allow us to spatially mask the
data ahead of time. swiftsimio provides a number of objects that help
with this. This functionality is provided through the swiftsimio.masks
sub-module but is available easily through the swiftsimio.mask()
top-level function.

This functionality is used heavily in our VELOCIraptor integration library [https://github.com/swiftsim/velociraptor-python]
for only reading data that is near bound objects.

There are two types of mask, with the default only allowing spatial masking.
Full masks require significantly more memory overhead and are generally much
slower than the spatial only mask.

Spatial-only masking

Spatial only masking is approximate and allows you to only load particles
within a given region. It is precise to the top-level cells that are defined
within SWIFT. It will always load all of the particles that you request, but
for simplicity it may also load some particles that are slightly outside
of the region of interest. This is because it works as follows:

	Load the top-level cell metadata.

	Find the overlap between the specified region and these cells.

	Load all cells within that overlap.

As you can see, the edges of regions may load in extra information as we
always load the whole top-level cell.

Example

In this example we will use the swiftsimio.masks.SWIFTMask object
to load the bottom left ‘half’ corner of the box.

import swiftsimio as sw

filename = "cosmo_volume_example.hdf5"

mask = sw.mask(filename)
The full metadata object is available from within the mask
boxsize = mask.metadata.boxsize
load_region is a 3x2 list [[left, right], [bottom, top], [front, back]]
load_region = [[0.0 * b, 0.5 * b] for b in boxsize]

Constrain the mask
mask.constrain_spatial(load_region)

Now load the snapshot with this mask
data = sw.load(filename, mask=mask)

data is now a regular swiftsimio.reader.SWIFTDataset object, but
it only ever loads particles that are (approximately) inside the
load_region region.

Importantly, this method has a tiny memory overhead, and should also have a
relatively small overhead when reading the data. This allows you to use snapshots
that are much larger than the available memory on your machine and process them
with ease.

It is also possible to build up a region with a more complicated geometry by
making repeated calls to constrain_spatial()
and setting the optional argument intersect=True. By default any existing
selection of cells would be overwritten; this option adds any additional cells
that need to be selected for the new region to the existing selection instead.
For instance, to add the diagonally opposed octant to the selection made above
(and so obtain a region shaped like two cubes with a single corner touching):

additional_region = [[0.5 * b, 1.0 * b] for b in boxsize]
mask.constrain_spatial(additional_region, intersect=True)

In the first call to constrain_spatial() the
intersect argument can be set to True or left False (the default): since
no mask yet exists both give the same result.

Full mask

The below example shows the use of a full masking object, used to constrain
densities of particles and only load particles within that density window.

import swiftsimio as sw

This creates and sets up the masking object.
mask = sw.mask("cosmological_volume.hdf5", spatial_only=False)

This ahead-of-time creates a spatial mask based on the cell metadata.
mask.constrain_spatial([
 [0.2 * mask.metadata.boxsize[0], 0.7 * mask.metadata.boxsize[0]],
 None,
 None]
)

Now, just for fun, we also constrain the density between
0.4 g/cm^3 and 0.8. This reads in the relevant data in the region,
and tests it element-by-element. Note that using masks of this type
is significantly slower than using the spatial-only masking.
density_units = mask.units.mass / mask.units.length**3
mask.constrain_mask("gas", "density", 0.4 * density_units, 0.8 * density_units)

Now we can grab the actual data object. This includes the mask as a parameter.
data = sw.load("cosmo_volume_example.hdf5", mask=mask)

When the attributes of this data object are accessed, only the ones that
belong to the masked region (in both density and spatial) are read. I.e. if I
ask for the temperature of particles, it will recieve an array containing
temperatures of particles that lie in the region [0.2, 0.7] and have a
density between 0.4 and 0.8 g/cm^3.

Writing subset of snapshot

In some cases it may be useful to write a subset of an existing snapshot to its
own hdf5 file. This could be used, for example, to extract a galaxy halo that
is of interest from a snapshot so that the file is easier to work with and transport.

To do this the write_subset function is provided. It can be used, for example,
as follows

import swiftsimio as sw
import unyt

mask = sw.mask("eagle_snapshot.hdf5")
mask.constrain_spatial([
 [unyt.unyt_quantity(100, unyt.kpc), unyt.unyt_quantity(1000, unyt.kpc)],
 None,
 None])

sw.subset_writer.write_subset("test_subset.hdf5", mask)

This will write a snapshot which contains the particles from the specified snapshot
whose x-coordinate is within the range [100, 1000] kpc. This function uses the
cell mask which encompases the specified spatial domain to successively read portions
of datasets from the input file and writes them to a new snapshot.

Due to the coarse grained nature of the cell mask, particles from outside this range
may also be included if they are within the same top level cells as particles that
fall within the given range.

Please note that it is important to run constrain_spatial as this generates
and stores the cell mask needed to write the snapshot subset.

Visualisation

swiftsimio provides visualisation routines accelerated with the
numba module. They work without this module, but we strongly recommend
installing it for the best performance (1000x+ speedups). These are provided
in the swiftismio.visualisation sub-modules.

The three built-in rendering types (described below) have the following
common interface:

{render_func_name}_gas(
 data=data, # SWIFTsimIO dataset
 resolution=1024, # Resolution along one axis of the output image
 project="masses", # Variable to project, e.g. masses, temperatures, etc.
 parallel=False, # Construct the image in (thread) parallel?
 region=None, # None, or a list telling which region to render_func_name
 periodic=True, # Whether or not to apply periodic boundary conditions
)

The output of these functions comes with associated units and has the correct
dimensions. There are lower-level APIs (also documented here) that provide
additional functionality.

	Projection
	Example

	Backends

	Periodic boundaries

	Rotations

	Other particle types

	Lower-level API

	Slices
	Example

	Periodic boundaries

	Rotations

	Lower-level API

	Volume Rendering
	Example

	Periodic boundaries

	Rotations

	Lower-level API

	Tools
	2D Color Maps

Projection

The swiftsimio.visualisation.projection sub-module provides an interface
to render SWIFT data projected to a grid. This takes your 3D data and projects
it down to 2D, such that if you request masses to be smoothed then these
functions return a surface density.

This effectively solves the equation:

\(\tilde{A}_i = \sum_j A_j W_{ij, 2D}\)

with \(\tilde{A}_i\) the smoothed quantity in pixel \(i\), and
\(j\) all particles in the simulation, with \(W\) the 2D kernel.
Here we use the Wendland-C2 kernel.

The primary function here is
swiftsimio.visualisation.projection.project_gas(), which allows you to
create a gas projection of any field. See the example below.

Example

from swiftsimio import load
from swiftsimio.visualisation.projection import project_gas

data = load("cosmo_volume_example.hdf5")

This creates a grid that has units msun / Mpc^2, and can be transformed like
any other unyt quantity
mass_map = project_gas(
 data,
 resolution=1024,
 project="masses",
 parallel=True,
 periodic=True,
)

Let's say we wish to save it as msun / kpc^2,
from unyt import msun, kpc
mass_map.convert_to_units(msun / kpc**2)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("gas_surface_dens_map.png", LogNorm()(mass_map.value), cmap="viridis")

This basic demonstration creates a mass surface density map.

To create, for example, a projected temperature map, we need to remove the
surface density dependence (i.e. project_gas() returns a surface
temperature in units of K / kpc^2 and we just want K) by dividing out by
this:

from swiftsimio import load
from swiftsimio.visualisation.projection import project_gas

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Map in msun / mpc^2
mass_map = project_gas(
 data,
 resolution=1024,
 project="masses",
 parallel=True,
 periodic=True,
)
Map in msun * K / mpc^2
mass_weighted_temp_map = project_gas(
 data,
 resolution=1024,
 project="mass_weighted_temps",
 parallel=True,
 periodic=True,
)

temp_map = mass_weighted_temp_map / mass_map

from unyt import K
temp_map.convert_to_units(K)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("temp_map.png", LogNorm()(temp_map.value), cmap="twilight")

The output from this example, when used with the example data provided in the
loading data section should look something like:

[image: ../_images/temp_map.png]

Backends

In certain cases, rather than just using this facility for visualisation, you
will wish that the values that are returned to be as well converged as
possible. For this, we provide several different backends. These are passed
as backend="str" to all of the projection visualisation functions, and
are available in the module
swiftsimio.visualisation.projection.projection_backends. The available
backends are as follows:

	fast: The default backend - this is extremely fast, and provides very basic
smoothing, with a return type of single precision floating point numbers.

	histogram: This backend provides zero smoothing, and acts in a similar way
to the np.hist2d function but with the same arguments as scatter.

	reference: The same backend as fast but with two distinguishing features;
all calculations are performed in double precision, and it will return early
with a warning message if there are not enough pixels to fully resolve each kernel.
Regular users should not use this mode.

	renormalised: The same as fast, but each kernel is evaluated twice and
renormalised to ensure mass conservation within floating point precision. Returns
single precision arrays.

	subsampled: This is the recommended mode for users who wish to have converged
results even at low resolution. Each kernel is evaluated at least 32 times, with
overlaps between pixels considered for every single particle. Returns in
double precision.

	subsampled_extreme: The same as subsampled, but provides 64 kernel
evaluations.

	gpu: The same as fast but uses CUDA for faster computation on supported
GPUs. The parallel implementation is the same function as the non-parallel.

Example:

from swiftsimio import load
from swiftsimio.visualisation.projection import project_gas

data = load("cosmo_volume_example.hdf5")

subsampled_array = project_gas(
 data,
 resolution=1024,
 project="entropies",
 parallel=True,
 backend="subsampled",
 periodic=True,
)

This will likely look very similar to the image that you make with the default
backend="fast", but will have a well-converged distribution at any resolution
level.

Periodic boundaries

Cosmological simulations and many other simulations use periodic boundary
conditions. This has implications for the particles at the edge of the
simulation box: they can contribute to pixels on multiple sides of the image.
If this effect is not taken into account, then the pixels close to the edge
will have values that are too low because of missing contributions.

All visualisation functions by default assume a periodic box. Rather than
simply projecting each individual particle once, four additional periodic copies
of each particle are also projected. Most copies will project outside the valid
pixel range, but the copies that do not ensure that pixels close to the edge
receive all necessary contributions. Thanks to Numba optimisations, the overhead
of these additional copies is relatively small.

There are some caveats with this approach. If you try to visualise a subset of
the particles in the box (e.g. using a mask), then only periodic copies of
particles in this subset will be used. If the subset does not include particles
on the other side of the periodic boundary, then these will still be missing
from the projection. The same is true if you visualise a region of the box.
The periodic boundary wrapping is also not compatible with rotations (see below)
and should therefore not be used together with a rotation.

Rotations

Sometimes you will need to visualise a galaxy from a different perspective.
The swiftsimio.visualisation.rotation sub-module provides routines to
generate rotation matrices corresponding to vectors, which can then be
provided to the rotation_matrix argument of project_gas() (and
project_gas_pixel_grid()). You will also need to supply the
rotation_center argument, as the rotation takes place around this given
point. The example code below loads a snapshot, and a halo catalogue, and
creates an edge-on and face-on projection using the integration in
velociraptor. More information on possible integrations with this library
is shown in the velociraptor section.

from swiftsimio import load, mask
from velociraptor import load as load_catalogue
from swiftsimio.visualisation.rotation import rotation_matrix_from_vector
from swiftsimio.visualisation.projection import project_gas_pixel_grid

import unyt
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm

Radius around which to load data, we will visualise half of this
size = 1000 * unyt.kpc

snapshot_filename = "cosmo_volume_example.hdf5"
catalogue_filename = "cosmo_volume_example.properties"

catalogue = load_catalogue(catalogue_filename)

Which halo should we visualise?
halo = 0

x = catalogue.positions.xcmbp[halo]
y = catalogue.positions.ycmbp[halo]
z = catalogue.positions.zcmbp[halo]

lx = catalogue.angular_momentum.lx[halo]
ly = catalogue.angular_momentum.ly[halo]
lz = catalogue.angular_momentum.lz[halo]

The angular momentum vector will point perpendicular to the galaxy disk.
If your simulation contains stars, use lx_star
angular_momentum_vector = np.array([lx.value, ly.value, lz.value])
angular_momentum_vector /= np.linalg.norm(angular_momentum_vector)

face_on_rotation_matrix = rotation_matrix_from_vector(
 angular_momentum_vector
)
edge_on_rotation_matrix = rotation_matrix_from_vector(
 angular_momentum_vector,
 axis="y"
)

region = [
 [x - size, x + size],
 [y - size, y + size],
 [z - size, z + size],
]

visualise_region = [
 x - 0.5 * size, x + 0.5 * size,
 y - 0.5 * size, y + 0.5 * size,
]

data_mask = mask(snapshot_filename)
data_mask.constrain_spatial(region)
data = load(snapshot_filename, mask=data_mask)

Use project_gas_pixel_grid to generate projected images

common_arguments = dict(
 data=data,
 resolution=512,
 parallel=True,
 region=visualise_region,
 periodic=False, # disable periodic boundaries when using rotations
)

un_rotated = project_gas_pixel_grid(**common_arguments)

face_on = project_gas_pixel_grid(
 **common_arguments,
 rotation_center=unyt.unyt_array([x, y, z]),
 rotation_matrix=face_on_rotation_matrix,
)

edge_on = project_gas_pixel_grid(
 **common_arguments,
 rotation_center=unyt.unyt_array([x, y, z]),
 rotation_matrix=edge_on_rotation_matrix,
)

Using this with the provided example data will just show blobs due to its low resolution
nature. Using one of the EAGLE volumes (examples/EAGLE_ICs) will produce much nicer
galaxies, but that data is too large to provide as an example in this tutorial.

You can also provide an extra two values, the z min and max, as part of the
region parameter. This may have some slight performance impact, so it is
generally advised that you do this on sub-loaded volumes only.

Other particle types

Other particle types are able to be visualised through the use of the
swiftsimio.visualisation.projection.project_pixel_grid() function. This
does not attach correct symbolic units, so you will have to work those out
yourself, but it does perform the smoothing. We aim to introduce the feature
of correctly applied units to these projections soon.

To use this feature for particle types that do not have smoothing lengths, you
will need to generate them, as in the example below where we create a
mass density map for dark matter. We provide a utility to do this through
swiftsimio.visualisation.smoothing_length_generation.generate_smoothing_lengths().

from swiftsimio import load
from swiftsimio.visualisation.projection import project_pixel_grid
from swiftsimio.visualisation.smoothing_length_generation import generate_smoothing_lengths

data = load("cosmo_volume_example.hdf5")

Generate smoothing lengths for the dark matter
data.dark_matter.smoothing_length = generate_smoothing_lengths(
 data.dark_matter.coordinates,
 data.metadata.boxsize,
 kernel_gamma=1.8,
 neighbours=57,
 speedup_fac=2,
 dimension=3,
)

Project the dark matter mass
dm_mass = project_pixel_grid(
 # Note here that we pass in the dark matter dataset not the whole
 # data object, to specify what particle type we wish to visualise
 data=data.dark_matter,
 boxsize=data.metadata.boxsize,
 resolution=1024,
 project="masses",
 parallel=True,
 region=None,
 periodic=True,
)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Everyone knows that dark matter is purple
imsave("dm_mass_map.png", LogNorm()(dm_mass), cmap="inferno")

The output from this example, when used with the example data provided in the
loading data section should look something like:

[image: ../_images/dm_mass_map.png]

Lower-level API

The lower-level API for projections allows for any general positions,
smoothing lengths, and smoothed quantities, to generate a pixel grid that
represents the smoothed version of the data.

This API is available through
swiftsimio.visualisation.projection.scatter() and
swiftsimio.visualisation.projection.scatter_parallel() for the parallel
version. The parallel version uses significantly more memory as it allocates
a thread-local image array for each thread, summing them in the end. Here we
will only describe the scatter variant, but they behave in the exact same way.

By default this uses the “fast” backend. To use the others, you can select them
manually from the module, or by using the backends and backends_parallel
dictionaries in swiftsimio.visualisation.projection.

To use this function, you will need:

	x-positions of all of your particles, x.

	y-positions of all of your particles, y.

	A quantity which you wish to smooth for all particles, such as their
mass, m.

	Smoothing lengths for all particles, h.

	The resolution you wish to make your square image at, res.

Optionally, you will also need:
+ the size of the simulation box in x and y, box_x and box_y.

The key here is that only particles in the domain [0, 1] in x, and [0, 1] in y
will be visible in the image. You may have particles outside of this range;
they will not crash the code, and may even contribute to the image if their
smoothing lengths overlap with [0, 1]. You will need to re-scale your data
such that it lives within this range. Then you may use the function as follows:

from swiftsimio.visualisation.projection import scatter

Using the variable names from above
out = scatter(x=x, y=y, h=h, m=m, res=res)

out will be a 2D numpy grid of shape [res, res]. You will need
to re-scale this back to your original dimensions to get it in the correct units,
and do not forget that it now represents the smoothed quantity per surface area.

If the optional arguments box_x and box_y are provided, they should
contain the simulation box size in the same re-scaled coordinates as x and
y. The projection backend will then correctly apply periodic boundary
wrapping. If box_x and box_y are not provided or set to 0, no
periodic boundaries are applied.

Slices

The swiftsimio.visualisation.slice sub-module provides an interface
to render SWIFT data onto a slice. This takes your 3D data and finds the 3D
density at fixed z-position, slicing through the box.

This effectively solves the equation:

\(\tilde{A}_i = \sum_j A_j W_{ij, 3D}\)

with \(\tilde{A}_i\) the smoothed quantity in pixel \(i\), and
\(j\) all particles in the simulation, with \(W\) the 3D kernel.
Here we use the Wendland-C2 kernel. Note that here we take the kernel
at a fixed z-position.

The primary function here is
swiftsimio.visualisation.slice.slice_gas(), which allows you to
create a gas slice of any field. See the example below.

Example

from swiftsimio import load
from swiftsimio.visualisation.slice import slice_gas

data = load("cosmo_volume_example.hdf5")

This creates a grid that has units msun / Mpc^3, and can be transformed like
any other unyt quantity. The position of the slice along the z axis is
provided in the z_slice argument.
mass_map = slice_gas(
 data,
 z_slice=0.5 * data.metadata.boxsize[2],
 resolution=1024,
 project="masses",
 parallel=True,
 periodic=True,
)

Let's say we wish to save it as g / cm^2,
from unyt import g, cm
mass_map.convert_to_units(g / cm**3)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("gas_slice_map.png", LogNorm()(mass_map.value), cmap="viridis")

This basic demonstration creates a mass density map.

To create, for example, a projected temperature map, we need to remove the
density dependence (i.e. slice_gas() returns a volumetric temperature
in units of K / kpc^3 and we just want K) by dividing out by this:

from swiftsimio import load
from swiftsimio.visualisation.slice import slice_gas

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Map in msun / mpc^3
mass_map = slice_gas(
 data,
 z_slice=0.5 * data.metadata.boxsize[2],
 resolution=1024,
 project="masses",
 parallel=True,
 periodic=True,
)

Map in msun * K / mpc^3
mass_weighted_temp_map = slice_gas(
 data,
 z_slice=0.5 * data.metadata.boxsize[2],
 resolution=1024,
 project="mass_weighted_temps",
 parallel=True,
 periodic=True,
)

temp_map = mass_weighted_temp_map / mass_map

from unyt import K
temp_map.convert_to_units(K)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("temp_map.png", LogNorm()(temp_map.value), cmap="twilight")

The output from this example, when used with the example data provided in the
loading data section should look something like:

[image: ../_images/temp_slice.png]

Periodic boundaries

Cosmological simulations and many other simulations use periodic boundary
conditions. This has implications for the particles at the edge of the
simulation box: they can contribute to pixels on multiple sides of the image.
If this effect is not taken into account, then the pixels close to the edge
will have values that are too low because of missing contributions.

All visualisation functions by default assume a periodic box. Rather than
simply summing each individual particle once, eight additional periodic copies
of each particle are also accounted for. Most copies will contribute outside the
valid pixel range, but the copies that do not ensure that pixels close to the
edge receive all necessary contributions. Thanks to Numba optimisations, the
overhead of these additional copies is relatively small.

There are some caveats with this approach. If you try to visualise a subset of
the particles in the box (e.g. using a mask), then only periodic copies of
particles in this subset will be used. If the subset does not include particles
on the other side of the periodic boundary, then these will still be missing
from the slice. The same is true if you visualise a region of the box.
The periodic boundary wrapping is also not compatible with rotations (see below)
and should therefore not be used together with a rotation.

Rotations

Rotations of the box prior to slicing are provided in a similar fashion to the
swiftsimio.visualisation.projection sub-module, by using the
swiftsimio.visualisation.rotation sub-module. To rotate the perspective
prior to slicing a rotation_center argument in slice_gas() needs
to be provided, specifying the point around which the rotation takes place.
The angle of rotation is specified with a matrix, supplied by rotation_matrix
in slice_gas(). The rotation matrix may be computed with
rotation_matrix_from_vector(). This will result in the perspective being
rotated to be along the provided vector. This approach to rotations applied to
the above example is shown below.

from swiftsimio import load
from swiftsimio.visualisation.slice import slice_gas
from swiftsimio.visualisation.rotation import rotation_matrix_from_vector

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Specify the rotation parameters
center = 0.5 * data.metadata.boxsize
rotate_vec = [0.5,0.5,1]
matrix = rotation_matrix_from_vector(rotate_vec, axis='z')

Map in msun / mpc^3
If a rotation center is provided, z_slice is taken relative to this
center, resulting in a slice perpendicular to the rotated z axis
mass_map = slice_gas(
 data,
 z_slice=0. * data.metadata.boxsize[2],
 resolution=1024,
 project="masses",
 rotation_matrix=matrix,
 rotation_center=center,
 parallel=True,
 periodic=False, # disable periodic boundaries when using rotations
)

Map in msun * K / mpc^3
mass_weighted_temp_map = slice_gas(
 data,
 z_slice=0. * data.metadata.boxsize[2],
 resolution=1024,
 project="mass_weighted_temps",
 rotation_matrix=matrix,
 rotation_center=center,
 parallel=True,
 periodic=False,
)

temp_map = mass_weighted_temp_map / mass_map

from unyt import K
temp_map.convert_to_units(K)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("temp_map.png", LogNorm()(temp_map.value), cmap="twilight")

Lower-level API

The lower-level API for slices allows for any general positions,
smoothing lengths, and smoothed quantities, to generate a pixel grid that
represents the smoothed, sliced, version of the data.

This API is available through
swiftsimio.visualisation.slice.slice_scatter() and
swiftsimio.visualisation.slice.slice_scatter_parallel() for the parallel
version. The parallel version uses significantly more memory as it allocates
a thread-local image array for each thread, summing them in the end. Here we
will only describe the scatter variant, but they behave in the exact same way.

To use this function, you will need:

	x-positions of all of your particles, x.

	y-positions of all of your particles, y.

	z-positions of all of your particles, z.

	Where in the range you wish to slice, z_slice.

	A quantity which you wish to smooth for all particles, such as their
mass, m.

	Smoothing lengths for all particles, h.

	The resolution you wish to make your square image at, res.

Optionally, you will also need:
+ the size of the simulation box in x, y and z, box_x, box_y and box_z.

The key here is that only particles in the domain [0, 1] in x and y will be
visible in the image. You may have particles outside of this range; they will
not crash the code, and may even contribute to the image if their smoothing
lengths overlap with [0, 1]. You will need to re-scale your data such that it
lives within this range. Smoothing lengths and z coordinates need to be
re-scaled in the same way (using the same scaling factor), but z coordinates do
not need to lie in the domain [0, 1]. Then you may use the function as follows:

from swiftsimio.visualisation.slice import slice_scatter

Using the variable names from above
out = slice_scatter(x=x, y=y, z=z, h=h, m=m, z_slice=z_slice, res=res)

out will be a 2D numpy grid of shape [res, res]. You will need
to re-scale this back to your original dimensions to get it in the correct units,
and do not forget that it now represents the smoothed quantity per volume.

If the optional arguments box_x, box_y and box_z are provided, they
should contain the simulation box size in the same re-scaled coordinates as
x, y and z. The slicing function will then correctly apply
periodic boundary wrapping. If box_x, box_y and box_z are not
provided or set to 0, no periodic boundaries are applied.

Volume Rendering

The swiftsimio.visualisation.volume_render sub-module provides an
interface to render SWIFT data onto a fixed grid. This takes your 3D data and
finds the 3D density at fixed positions, allowing it to be used in codes that
require fixed grids such as radiative transfer programs.

This effectively solves the equation:

\(\tilde{A}_i = \sum_j A_j W_{ij, 3D}\)

with \(\tilde{A}_i\) the smoothed quantity in pixel \(i\), and
\(j\) all particles in the simulation, with \(W\) the 3D kernel.
Here we use the Wendland-C2 kernel.

The primary function here is
swiftsimio.visualisation.volume_render.render_gas(), which allows you
to create a gas density grid of any field, see the example below.

Example

from swiftsimio import load
from swiftsimio.visualisation.volume_render import render_gas

data = load("cosmo_volume_example.hdf5")

This creates a grid that has units msun / Mpc^3, and can be transformed like
any other unyt quantity.
mass_grid = render_gas(
 data,
 resolution=256,
 project="masses",
 parallel=True,
 periodic=True,
)

This basic demonstration creates a mass density cube.

To create, for example, a projected temperature cube, we need to remove the
density dependence (i.e. render_gas() returns a volumetric
temperature in units of K / kpc^3 and we just want K) by dividing out by
this:

from swiftsimio import load
from swiftsimio.visualisation.volume_render import render_gas

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Map in msun / mpc^3
mass_cube = render_gas(
 data,
 resolution=256,
 project="masses",
 parallel=True,
 periodic=True,
)

Map in msun * K / mpc^3
mass_weighted_temp_cube = render_gas(
 data,
 resolution=256,
 project="mass_weighted_temps",
 parallel=True,
 periodic=True,
)

A 256 x 256 x 256 cube with dimensions of temperature
temp_cube = mass_weighted_temp_cube / mass_cube

Periodic boundaries

Cosmological simulations and many other simulations use periodic boundary
conditions. This has implications for the particles at the edge of the
simulation box: they can contribute to voxels on multiple sides of the image.
If this effect is not taken into account, then the voxels close to the edge
will have values that are too low because of missing contributions.

All visualisation functions by default assume a periodic box. Rather than
simply summing each individual particle once, eight additional periodic copies
of each particle are also taken into account. Most copies will contribute
outside the valid voxel range, but the copies that do not ensure that voxels
close to the edge receive all necessary contributions. Thanks to Numba
optimisations, the overhead of these additional copies is relatively small.

There are some caveats with this approach. If you try to visualise a subset of
the particles in the box (e.g. using a mask), then only periodic copies of
particles in this subset will be used. If the subset does not include particles
on the other side of the periodic boundary, then these will still be missing
from the voxel cube. The same is true if you visualise a region of the box.
The periodic boundary wrapping is also not compatible with rotations (see below)
and should therefore not be used together with a rotation.

Rotations

Rotations of the box prior to volume rendering are provided in a similar fashion
to the swiftsimio.visualisation.projection sub-module, by using the
swiftsimio.visualisation.rotation sub-module. To rotate the perspective
prior to slicing a rotation_center argument in render_gas() needs
to be provided, specifying the point around which the rotation takes place.
The angle of rotation is specified with a matrix, supplied by rotation_matrix
in render_gas(). The rotation matrix may be computed with
rotation_matrix_from_vector(). This will result in the perspective being
rotated to be along the provided vector. This approach to rotations applied to
the above example is shown below.

from swiftsimio import load
from swiftsimio.visualisation.volume_render import render_gas
from swiftsimio.visualisation.rotation import rotation_matrix_from_vector

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Specify the rotation parameters
center = 0.5 * data.metadata.boxsize
rotate_vec = [0.5,0.5,1]
matrix = rotation_matrix_from_vector(rotate_vec, axis='z')

Map in msun / mpc^3
mass_cube = render_gas(
 data,
 resolution=256,
 project="masses",
 rotation_matrix=matrix,
 rotation_center=center,
 parallel=True,
 periodic=False, # disable periodic boundaries for rotations
)

Map in msun * K / mpc^3
mass_weighted_temp_cube = render_gas(
 data,
 resolution=256,
 project="mass_weighted_temps",
 rotation_matrix=matrix,
 rotation_center=center,
 parallel=True,
 periodic=False,
)

A 256 x 256 x 256 cube with dimensions of temperature
temp_cube = mass_weighted_temp_cube / mass_cube

Lower-level API

The lower-level API for volume rendering allows for any general positions,
smoothing lengths, and smoothed quantities, to generate a pixel grid that
represents the smoothed, volume rendered, version of the data.

This API is available through
swiftsimio.visualisation.volume_render.scatter() and
swiftsimio.visualisation.volume_render.scatter_parallel() for the parallel
version. The parallel version uses significantly more memory as it allocates
a thread-local image array for each thread, summing them in the end. Here we
will only describe the scatter variant, but they behave in the exact same way.

To use this function, you will need:

	x-positions of all of your particles, x.

	y-positions of all of your particles, y.

	z-positions of all of your particles, z.

	A quantity which you wish to smooth for all particles, such as their
mass, m.

	Smoothing lengths for all particles, h.

	The resolution you wish to make your cube at, res.

Optionally, you will also need:
+ the size of the simulation box in x, y and z, box_x, box_y and box_z.

The key here is that only particles in the domain [0, 1] in x, [0, 1] in y,
and [0, 1] in z. will be visible in the cube. You may have particles outside
of this range; they will not crash the code, and may even contribute to the
image if their smoothing lengths overlap with [0, 1]. You will need to
re-scale your data such that it lives within this range. Then you may use the
function as follows:

from swiftsimio.visualisation.volume_render import scatter

Using the variable names from above
out = scatter(x=x, y=y, z=z, h=h, m=m, res=res)

out will be a 3D numpy grid of shape [res, res, res]. You will
need to re-scale this back to your original dimensions to get it in the
correct units, and do not forget that it now represents the smoothed quantity
per volume.

If the optional arguments box_x, box_y and box_z are provided, they
should contain the simulation box size in the same re-scaled coordinates as
x, y and z. The rendering function will then correctly apply
periodic boundary wrapping. If box_x, box_y and box_z are not
provided or set to 0, no periodic boundaries are applied

Tools

swiftsimio includes a few tools to help you make your visualisations
‘prettier’. Below we describe these tools and their use.

2D Color Maps

The swiftsimio.visualisation.tools.cmaps module includes three
objects that can be used to deploy two dimensional colour maps. The first,
swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2D, and second
swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2DHSV, allow
you to generate new color maps from sets of colors and coordinates.

bower = LinearSegmentedCmap2D(
 colors=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]],
 coordinates=[[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
 name="bower"
)

This generates a color map that is a quasi-linear interpolation between all
of the points. The map can be displayed using the plot method,

fig, ax = plt.subplots()

bower.plot(ax)

Which generates:

[image: ../_images/bower_cmap.png]
Finally, the color map can be applied to data by calling it:

def vertical_func(x):
 return abs(1.0 - 2.0 * x)

def horizontal_func(y):
 return y ** 2

raster_at = np.linspace(0, 1, 1024)

x, y = np.meshgrid(horizontal_func(raster_at), vertical_func(raster_at))

imaged = bower(x, y)

plt.imsave("test_2d_cmap_output.png", imaged)

Where here imaged is an RGBA array. This outputs:

[image: ../_images/test_2d_cmap_output.png]
The final type of 2D color map is loaded from an image, such as the one displayed
below which is similar to the famous color map used for the Millenium simulation.

[image: ../_images/millenium_cmap.png]
This can be loaded using the
swiftsimio.visualisation.tools.cmaps.ImageCmap2D class, as follows:

mill = ImageCmap2D(filename="millenium_cmap.png")

and can be used similarly to the other color maps. For the example above, this
outputs the following:

[image: ../_images/test_2d_cmap_output_mill.png]
This is the recommended way to use two dimensional color maps, as their
generation can be quite complex and best left to image-generation programs
such as GIMP or Photoshop.

VELOCIraptor Integration

swiftsimio can be used with the velociraptor library
to extract the particles contained within a given halo and its surrounding
region.

The velociraptor library has documentation also available on
ReadTheDocs here [http://velociraptor-python.readthedocs.org/]. It can
be installed from PyPI using pip install velociraptor.

The overarching workflow for this integration is as follows:

	Load the halo catalogue and groups file using the velociraptor
module.

	Get two objects, corresponding to the bound and unbound particles,
for a halo.

	Use the to_swiftsimio_dataset to load the region around the halo
with our ahead-of-time masking technique.

	Use the region around the halo directly, or use the mask provided
for each particle type to only consider bound particles.

This workflow is explored below. You can use the example data available
below if you do not have any SWIFT and VELOCIraptor data available.

http://virgodb.cosma.dur.ac.uk/swift-webstorage/IOExamples/small_cosmo_volume.zip

Example

First, we must load the VELOCIraptor catalogue as follows:

from velociraptor import load as load_catalogue
from velociraptor.particles import load_groups

catalogue_name = "velociraptor"
snapshot_name = "snapshot"

catalogue = load_catalogue(f"{catalogue_name}.properties")
groups = load_groups(f"{catalogue_name}.catalog_groups", catalogue=catalogue)

Then, to extract the largest halo in the volume

particles, unbound_particles = groups.extract_halo(halo_id=0)

To load the particles to a swiftsimio dataset,

from velociraptor.swift.swift import to_swiftsimio_dataset

data, mask = to_swiftsimio_dataset(
 particles,
 f"{snapshot_name}.hdf5",
 generate_extra_mask=True
)

with the generate_extra_mask providing the second return value which
is a mask to extract only the bound particles in the system.

Making an image of the full box shows that only a small subsection of the
volume has been loaded (those within twice the maximal usable radius within
VELOCIraptor)

[image: ../_images/load_halo_fullbox.png]
The code for making this image is as follows:

from swiftsimio.visualisation import project_gas_pixel_grid
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm

grid = project_gas_pixel_grid(data=data, resolution=1024)

fig, ax = plt.subplots(figsize=(4, 4), dpi=1024 // 4)
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
ax.imshow(grid.T, origin="lower", cmap="inferno", norm=LogNorm(vmin=1e4, clip=True))
fig.savefig("load_halo_fullbox.png")

To make an image of just the central halo, we can access properties on the
particles instance to get the position of the halo.

region = [
 particles.x_mbp - particles.r_200crit, particles.x_mbp + particles.r_200crit,
 particles.y_mbp - particles.r_200crit, particles.y_mbp + particles.r_200crit,
]

grid = project_gas_pixel_grid(data=data, resolution=1024, region=region)

fig, ax = plt.subplots(figsize=(4, 4), dpi=1024 // 4)
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
ax.imshow(grid.T, origin="lower", cmap="inferno", norm=LogNorm(vmin=1e4, clip=True))
fig.savefig("load_halo_selection.png")

This produces the following image:

[image: ../_images/load_halo_selection.png]
Then, finally, we can visualise only the bound particles, through the use of the mask
object that was returned when we initially extracted the swiftsimio dataset:

grid = project_gas_pixel_grid(data=data, resolution=1024, region=region, mask=mask.gas)

fig, ax = plt.subplots(figsize=(4, 4), dpi=1024 // 4)
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
ax.imshow(grid.T, origin="lower", cmap="inferno", norm=LogNorm(vmin=1e4, clip=True))
fig.savefig("load_halo_bound_selection.png")

Producing the following image:

[image: ../_images/load_halo_bound_selection.png]
Hopefully, when you use this feature, you have more exciting data to use than the
as-small-as-possible example that we show here!

Creating Initial Conditions

Writing datasets that are valid for consumption for cosmological codes can be
difficult, especially when considering how to best use units. SWIFT uses a
different set of internal units (specified in your parameter file) that does
not necessarily need to be the same set of units that initial conditions are
specified in. Nevertheless, it is important to ensure that units in the
initial conditions are all consistent with each other. To facilitate this,
we use unyt arrays. The below example generates randomly placed gas
particles with uniform densities.

The functionality to create initial conditions is available through
the swiftsimio.writer sub-module, and the top-level
swiftsimio.Writer object.

Note that the properties that swiftsimio requires in the initial
conditions are the only ones that are actually read by SWIFT; other fields
will be left un-read and as such should not be included in initial conditions
files.

A current known issue is that due to inconsistencies with the initial
conditions and simulation snapshots, swiftsimio is not actually able
to read the inititial conditions that it produces. We are aiming to fix this
in an upcoming release.

Example

from swiftsimio import Writer
from swiftsimio.units import cosmo_units

import unyt
import numpy as np

Box is 100 Mpc
boxsize = 100 * unyt.Mpc

Generate object. cosmo_units corresponds to default Gadget-oid units
of 10^10 Msun, Mpc, and km/s
x = Writer(cosmo_units, boxsize)

32^3 particles.
n_p = 32**3

Randomly spaced coordinates from 0, 100 Mpc in each direction
x.gas.coordinates = np.random.rand(n_p, 3) * (100 * unyt.Mpc)

Random velocities from 0 to 1 km/s
x.gas.velocities = np.random.rand(n_p, 3) * (unyt.km / unyt.s)

Generate uniform masses as 10^6 solar masses for each particle
x.gas.masses = np.ones(n_p, dtype=float) * (1e6 * unyt.msun)

Generate internal energy corresponding to 10^4 K
x.gas.internal_energy = (
 np.ones(n_p, dtype=float) * (1e4 * unyt.kb * unyt.K) / (1e6 * unyt.msun)
)

Generate initial guess for smoothing lengths based on MIPS
x.gas.generate_smoothing_lengths(boxsize=boxsize, dimension=3)

If IDs are not present, this automatically generates
x.write("test.hdf5")

Then, running h5glance on the resulting test.hdf5 produces:

test.hdf5
├Header
│ └5 attributes:
│ ├BoxSize: 100.0
│ ├Dimension: array [int64: 1]
│ ├Flag_Entropy_ICs: 0
│ ├NumPart_Total: array [int64: 6]
│ └NumPart_Total_HighWord: array [int64: 6]
├PartType0
│ ├Coordinates [float64: 32768 × 3]
│ ├InternalEnergy [float64: 32768]
│ ├Masses [float64: 32768]
│ ├ParticleIDs [float64: 32768]
│ ├SmoothingLength [float64: 32768]
│ └Velocities [float64: 32768 × 3]
└Units
└5 attributes:
 ├Unit current in cgs (U_I): array [float64: 1]
 ├Unit length in cgs (U_L): array [float64: 1]
 ├Unit mass in cgs (U_M): array [float64: 1]
 ├Unit temperature in cgs (U_T): array [float64: 1]
 └Unit time in cgs (U_t): array [float64: 1]

Note you do need to be careful that your choice of unit system does
not allow values over 2^31, i.e. you need to ensure that your
provided values (with units) when written to the file are safe to
be interpreted as (single-precision) floats. The only exception to
this is coordinates which are stored in double precision.

Statistics Files

swiftsimio includes routines to load log files, such as the
SFR.txt and energy.txt. This is available through the
swiftsimio.statistics.SWIFTStatisticsFile object, or through
the main load_statistics function.

Example

from swiftsimio import load_statistics

data = load_statistics("energy.txt")

print(data)

print(x.total_mass.name)

Will output:

Statistics file: energy.txt, containing fields: #, step, time, a, z, total_mass,
gas_mass, dm_mass, sink_mass, star_mass, bh_mass, gas_z_mass, star_z_mass,
bh_z_mass, kin_energy, int_energy, pot_energy, rad_energy, gas_entropy, com_x,
com_y, com_z, mom_x, mom_y, mom_z, ang_mom_x, ang_mom_y, ang_mom_z

'Total mass in the simulation'

Command-line Utilities

swiftsimio comes with some useful command-line utilities.
Basic documentation for these is provided below, but you can always
find up-to-date documentation by invoking these with -h or
--help.

swiftsnap

The swiftsnap utility, introduced in swiftsimio version
3.1.2, allows you to preview the metadata inside a SWIFT snapshot
file. Simply invoke it with the path to a snapshot, and it will
show you a selection of useful metadata. See below for an example.

swiftsnap output_0103.hdf5

Produces the following output:

Untitled SWIFT simulation
Written at: 2020-06-01 08:44:51
Active policies: cosmological integration, hydro, keep, self gravity, steal
Output type: Snapshot, Output selection: Snapshot
LLVM/Clang (11.0.0)
Non-MPI version of SWIFT
SWIFT (io_selection_changes)
v0.8.5-725-g10d7d5b3-dirty
2020-05-29 18:00:58 +0100
Simulation state: z=0.8889, a=0.5294, t=6.421 Gyr
H_0=70.3 km/(Mpc*s), ρ_crit=1.433e-05 cm**(-3)
Ω_b=0.0455, Ω_k=0, Ω_lambda=0.724, Ω_m=0.276, Ω_r=0
ω=-1, ω_0=-1, ω_a=0
Gravity scheme: With per-particle softening
Hydrodynamics scheme: Gadget-2 version of SPH (Springel 2005)
Chemistry model: None
Cooling model: None
Entropy floor: None
Feedback model: None
Tracers: None

API Documentation

	swiftsimio package
	validate_file()

	mask()

	load()

	load_statistics()

	Subpackages
	swiftsimio.initial_conditions package

	swiftsimio.visualisation package

	Submodules
	swiftsimio.accelerated module

	swiftsimio.conversions module

	swiftsimio.masks module

	swiftsimio.objects module

	swiftsimio.optional_packages module

	swiftsimio.reader module

	swiftsimio.statistics module

	swiftsimio.subset_writer module

	swiftsimio.swiftsnap module

	swiftsimio.units module

	swiftsimio.writer module

Indices and tables

	Index

	Module Index

	Search Page

swiftsimio package

	
swiftsimio.validate_file(filename)

	Checks that the provided file is a SWIFT dataset.

	Parameters:

	filename (str) – name of file we want to check is a dataset

	Returns:

	if filename is a SWIFT dataset return True,
otherwise raise exception

	Return type:

	bool

	Raises:

	KeyError – Crash if the file is not a SWIFT data file

	
swiftsimio.mask(filename, spatial_only=True) → SWIFTMask

	Sets up a masking object for you to use with the correct units and
metadata available.

	Parameters:

	
	filename (str) – SWIFT data file to read from

	spatial_only (bool, optional) – Flag for only spatial masking, this is much faster but will not
allow you to use masking on other variables (e.g. density).
Defaults to True.

	Returns:

	empty mask object set up with the correct units and metadata

	Return type:

	SWIFTMask

Notes

If you are only planning on using this as a spatial mask, ensure
that spatial_only remains true. If you require the use of the
constrain_mask function, then you will need to use the (considerably
more expensive, ~bytes per particle instead of ~bytes per cell
spatial_only=False version).

	
swiftsimio.load(filename, mask=None) → SWIFTDataset

	Loads the SWIFT dataset at filename.

	Parameters:

	
	filename (str) – SWIFT snapshot file to read

	mask (SWIFTMask, optional) – mask to apply when reading dataset

	
swiftsimio.load_statistics(filename) → SWIFTStatisticsFile

	Loads a SWIFT statistics file (SFR.txt, energy.txt).

	Parameters:

	filename (str) – SWIFT statistics file path

Subpackages

	swiftsimio.initial_conditions package
	Submodules
	swiftsimio.initial_conditions.generate_particles module

	swiftsimio.visualisation package
	Subpackages
	swiftsimio.visualisation.projection_backends package
	Submodules
	swiftsimio.visualisation.projection_backends.fast module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.gpu module
	kernel()

	scatter_gpu()

	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.histogram module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.kernels module
	kernel_single_precision()

	kernel_double_precision()

	swiftsimio.visualisation.projection_backends.reference module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.renormalised module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.subsampled module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.subsampled_extreme module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.tools package
	Submodules
	swiftsimio.visualisation.tools.cmaps module
	ensure_rgba()

	apply_color_map()

	Cmap2D
	Cmap2D.colors

	Cmap2D.coordinates

	Cmap2D.generate_color_map_grid()

	Cmap2D.color_map_grid

	Cmap2D.plot()

	LinearSegmentedCmap2D
	LinearSegmentedCmap2D.generate_color_map_grid()

	LinearSegmentedCmap2DHSV
	LinearSegmentedCmap2DHSV.generate_color_map_grid()

	ImageCmap2D
	ImageCmap2D.generate_color_map_grid()

	Submodules
	swiftsimio.visualisation.projection module
	project_pixel_grid()

	project_gas_pixel_grid()

	project_gas()

	swiftsimio.visualisation.rotation module
	rotation_matrix_from_vector()

	swiftsimio.visualisation.slice module
	kernel()

	slice_scatter()

	slice_scatter_parallel()

	slice_gas_pixel_grid()

	slice_gas()

	swiftsimio.visualisation.smoothing_length_generation module
	generate_smoothing_lengths()

	swiftsimio.visualisation.volume_render module
	scatter()

	scatter_parallel()

	render_gas_voxel_grid()

	render_gas()

Submodules

	swiftsimio.accelerated module
	ranges_from_array()

	read_ranges_from_file_unchunked()

	index_dataset()

	concatenate_ranges()

	get_chunk_ranges()

	expand_ranges()

	extract_ranges_from_chunks()

	read_ranges_from_file_chunked()

	read_ranges_from_file()

	list_of_strings_to_arrays()

	swiftsimio.conversions module
	swift_cosmology_to_astropy()

	swiftsimio.masks module
	SWIFTMask
	SWIFTMask.constrain_mask()

	SWIFTMask.constrain_spatial()

	SWIFTMask.convert_masks_to_ranges()

	SWIFTMask.get_masked_counts_offsets()

	swiftsimio.objects module
	InvalidScaleFactor

	cosmo_factor
	cosmo_factor.a_factor

	cosmo_factor.redshift

	cosmo_array
	cosmo_array.comoving

	cosmo_array.cosmo_factor

	cosmo_array.compression

	cosmo_array.astype()

	cosmo_array.in_units()

	cosmo_array.byteswap()

	cosmo_array.compress()

	cosmo_array.diagonal()

	cosmo_array.flatten()

	cosmo_array.newbyteorder()

	cosmo_array.ravel()

	cosmo_array.repeat()

	cosmo_array.reshape()

	cosmo_array.swapaxes()

	cosmo_array.take()

	cosmo_array.transpose()

	cosmo_array.view()

	cosmo_array.T

	cosmo_array.ua

	cosmo_array.unit_array

	cosmo_array.convert_to_comoving()

	cosmo_array.convert_to_physical()

	cosmo_array.to_physical()

	cosmo_array.to_comoving()

	cosmo_array.compatible_with_comoving()

	cosmo_array.compatible_with_physical()

	cosmo_array.from_astropy()

	cosmo_array.from_pint()

	swiftsimio.optional_packages module
	tqdm()

	cuda_jit()

	swiftsimio.reader module
	MassTable

	MappingTable

	SWIFTUnits
	SWIFTUnits.mass

	SWIFTUnits.length

	SWIFTUnits.time

	SWIFTUnits.current

	SWIFTUnits.temperature

	SWIFTUnits.get_unit_dictionary()

	SWIFTMetadata
	SWIFTMetadata.header

	SWIFTMetadata.filename

	SWIFTMetadata.units

	SWIFTMetadata.get_metadata()

	SWIFTMetadata.get_named_column_metadata()

	SWIFTMetadata.get_mapping_metadata()

	SWIFTMetadata.postprocess_header()

	SWIFTMetadata.load_particle_types()

	SWIFTMetadata.extract_cosmology()

	SWIFTMetadata.present_particle_types

	SWIFTMetadata.present_particle_names

	SWIFTMetadata.code_info

	SWIFTMetadata.compiler_info

	SWIFTMetadata.library_info

	SWIFTMetadata.hydro_info

	SWIFTMetadata.viscosity_info

	SWIFTMetadata.diffusion_info

	SWIFTParticleTypeMetadata
	SWIFTParticleTypeMetadata.load_metadata()

	SWIFTParticleTypeMetadata.load_field_names()

	SWIFTParticleTypeMetadata.load_field_units()

	SWIFTParticleTypeMetadata.load_field_descriptions()

	SWIFTParticleTypeMetadata.load_field_compressions()

	SWIFTParticleTypeMetadata.load_cosmology()

	SWIFTParticleTypeMetadata.load_named_columns()

	generate_getter()

	generate_setter()

	generate_deleter()

	generate_dataset()

	SWIFTDataset
	SWIFTDataset.get_units()

	SWIFTDataset.get_metadata()

	SWIFTDataset.create_particle_datasets()

	swiftsimio.statistics module
	SWIFTStatisticsFile
	SWIFTStatisticsFile.header_names

	SWIFTStatisticsFile.header_units

	SWIFTStatisticsFile.header_snake_case_names

	SWIFTStatisticsFile.raw_lines

	swiftsimio.subset_writer module
	get_swift_name()

	get_dataset_mask()

	find_datasets()

	find_links()

	update_metadata_counts()

	write_metadata()

	write_datasubset()

	connect_links()

	write_subset()

	swiftsimio.swiftsnap module
	decode()

	swiftsnap()

	swiftsimio.units module

	swiftsimio.writer module
	get_dimensions()

	generate_getter()

	generate_setter()

	generate_deleter()

	generate_dataset()

	SWIFTWriterDataset
	SWIFTWriterDataset.create_particle_datasets()

	SWIFTWriterDataset.write()

swiftsimio.initial_conditions package

Initial conditions generation.

Submodules

	swiftsimio.initial_conditions.generate_particles module

swiftsimio.initial_conditions.generate_particles module

Particle generation code.

TBD

swiftsimio.visualisation package

Visualisation sub-module for swiftismio.

Subpackages

	swiftsimio.visualisation.projection_backends package
	Submodules
	swiftsimio.visualisation.projection_backends.fast module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.gpu module
	kernel()

	scatter_gpu()

	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.histogram module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.kernels module
	kernel_single_precision()

	kernel_double_precision()

	swiftsimio.visualisation.projection_backends.reference module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.renormalised module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.subsampled module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.subsampled_extreme module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.tools package
	Submodules
	swiftsimio.visualisation.tools.cmaps module
	ensure_rgba()

	apply_color_map()

	Cmap2D
	Cmap2D.colors

	Cmap2D.coordinates

	Cmap2D.generate_color_map_grid()

	Cmap2D.color_map_grid

	Cmap2D.plot()

	LinearSegmentedCmap2D
	LinearSegmentedCmap2D.generate_color_map_grid()

	LinearSegmentedCmap2DHSV
	LinearSegmentedCmap2DHSV.generate_color_map_grid()

	ImageCmap2D
	ImageCmap2D.generate_color_map_grid()

Submodules

	swiftsimio.visualisation.projection module
	project_pixel_grid()

	project_gas_pixel_grid()

	project_gas()

	swiftsimio.visualisation.rotation module
	rotation_matrix_from_vector()

	swiftsimio.visualisation.slice module
	kernel()

	slice_scatter()

	slice_scatter_parallel()

	slice_gas_pixel_grid()

	slice_gas()

	swiftsimio.visualisation.smoothing_length_generation module
	generate_smoothing_lengths()

	swiftsimio.visualisation.volume_render module
	scatter()

	scatter_parallel()

	render_gas_voxel_grid()

	render_gas()

swiftsimio.visualisation.projection_backends package

Backends for density projection.

These go in order (within the dictionary) from
fastest to most accurate, with the “_reference” style
being a developer-only indended feature.

Submodules

	swiftsimio.visualisation.projection_backends.fast module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.gpu module
	kernel()

	scatter_gpu()

	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.histogram module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.kernels module
	kernel_single_precision()

	kernel_double_precision()

	swiftsimio.visualisation.projection_backends.reference module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.renormalised module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.subsampled module
	scatter()

	scatter_parallel()

	swiftsimio.visualisation.projection_backends.subsampled_extreme module
	scatter()

	scatter_parallel()

swiftsimio.visualisation.projection_backends.fast module

Fast backend.

This uses float32 precision and no special cases.

	
swiftsimio.visualisation.projection_backends.fast.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.projection_backends.fast.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.gpu module

	
swiftsimio.visualisation.projection_backends.gpu.kernel(r: float32, H: float32)

	Single precision kernel implementation for swiftsimio.

This is the Wendland-C2 kernel as shown in Denhen & Aly (2012) [1].

	Parameters:

	
	r (float32) – radius used in kernel computation

	H (float32) – kernel width (i.e. radius of compact support for the kernel)

	Returns:

	Contribution to the density by the particle

	Return type:

	float32

References

[1]
Dehnen W., Aly H., 2012, MNRAS, 425, 1068

Notes

This is the cuda-compiled version of the kernel, designed for use
within the gpu backend. It has no double precision cousin.

	
swiftsimio.visualisation.projection_backends.gpu.scatter_gpu(x: float64, y: float64, m: float32, h: float32, box_x: float64, box_y: float64, img: float32)

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	img (np.array[float32]) – The output image.

Notes

Explicitly defining the types in this function allows
for a performance improvement. This is the cuda version,
and as such can only be ran on systems with a supported
GPU. Do not call this where cuda is not available (checks
can be performed using
swiftsimio.optional_packages.CUDA_AVAILABLE)

	
swiftsimio.visualisation.projection_backends.gpu.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
a performance improvement.

	
swiftsimio.visualisation.projection_backends.gpu.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
a performance improvement.

swiftsimio.visualisation.projection_backends.histogram module

Reference evaluation - returns a 2d histogram (i.e. no smoothing).

Uses double precision.

	
swiftsimio.visualisation.projection_backends.histogram.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.projection_backends.histogram.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.kernels module

Projection kernels.

	
swiftsimio.visualisation.projection_backends.kernels.kernel_single_precision(r: float32, H: float32)

	Single precision kernel implementation for swiftsimio.

This is the Wendland-C2 kernel as shown in Denhen & Aly (2012) [1].

	Parameters:

	
	r (float32) – radius used in kernel computation

	H (float32) – kernel width (i.e. radius of compact support for the kernel)

	Returns:

	Contribution to the density by the particle

	Return type:

	float32

See also

kernel_double_precision

References

[1]
Dehnen W., Aly H., 2012, MNRAS, 425, 1068

	
swiftsimio.visualisation.projection_backends.kernels.kernel_double_precision(r: float64, H: float64)

	Single precision kernel implementation for swiftsimio.

This is the Wendland-C2 kernel as shown in Denhen & Aly (2012) [2].

	Parameters:

	
	r (float32) – radius used in kernel computation

	H (float32) – kernel width (i.e. radius of compact support for the kernel)

	Returns:

	Contribution to the density by the particle

	Return type:

	float32

See also

kernel_single_precision

References

[2]
Dehnen W., Aly H., 2012, MNRAS, 425, 1068

swiftsimio.visualisation.projection_backends.reference module

Reference evaluation - only returns a ‘real’ result if no particles
lie below the resolution limit.

Uses double precision.

	
swiftsimio.visualisation.projection_backends.reference.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.projection_backends.reference.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.renormalised module

Renormalised projection visualisation.

This version of the function is the same as fast but provides an
explicit renormalisation of each kernel such that the mass is
conserved up to floating point precision.

	
swiftsimio.visualisation.projection_backends.renormalised.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.projection_backends.renormalised.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.subsampled module

Sub-sampled smoothing kernel with each kernel evaluated
at least 32^2 times. This uses a dithered pre-calculated
kernel for cell overlaps at small scales, and at large
scales uses subsampling.

Uses double precision.

	
swiftsimio.visualisation.projection_backends.subsampled.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.projection_backends.subsampled.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.subsampled_extreme module

Sub-sampled smoothing kernel with each kernel evaluated
at least 64^2 times. This uses a dithered pre-calculated
kernel for cell overlaps at small scales, and at large
scales uses subsampling.

Uses double precision.

	
swiftsimio.visualisation.projection_backends.subsampled_extreme.scatter(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Creates a weighted scatter plot

Computes contributions to from particles with positions
(x,`y`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

Uses 4x the number of sampling points as in scatter in subsampled.py

	
swiftsimio.visualisation.projection_backends.subsampled_extreme.scatter_parallel(x: float64, y: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from
particles with positions (x,`y`) with smoothing lengths h
weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of pixels along one axis, i.e. this returns a square
of res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x and y. Used
for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x and y. Used
for periodic wrapping.

	Returns:

	pixel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter
	Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

Uses 4x the number of sampling points as in scatter_parallel in subsampled.py

swiftsimio.visualisation.tools package

Submodules

	swiftsimio.visualisation.tools.cmaps module
	ensure_rgba()

	apply_color_map()

	Cmap2D
	Cmap2D.colors

	Cmap2D.coordinates

	Cmap2D.generate_color_map_grid()

	Cmap2D.color_map_grid

	Cmap2D.plot()

	LinearSegmentedCmap2D
	LinearSegmentedCmap2D.generate_color_map_grid()

	LinearSegmentedCmap2DHSV
	LinearSegmentedCmap2DHSV.generate_color_map_grid()

	ImageCmap2D
	ImageCmap2D.generate_color_map_grid()

swiftsimio.visualisation.tools.cmaps module

Two-dimensional colour map support, along with example colour maps.

	
swiftsimio.visualisation.tools.cmaps.ensure_rgba(input_color: Iterable[float]) → array

	Ensures a colour is RGBA compliant.

Default alpha if missing: 1.0.

	Parameters:

	input_color (iterable) – An iterable of maximum length 4, with RGBA values
encoded as floating point 0.0 -> 1.0.

	Returns:

	array_color – An array of length 4 as an RGBA color.

	Return type:

	np.array

	
swiftsimio.visualisation.tools.cmaps.apply_color_map(first_values, second_values, map_grid)

	Applies a 2D colour map by providing a 2D linear interpolation
to the known fixed grid points. Not to be called on its own,
as the map itself is provided by the LinearSegmentedCmap2D,
but this is provided separately so it can be numba-accelerated.

	Parameters:

	
	first_values (iterable[float]) – Array or list to loop over, containing floats ranging from 0.0
to 1.0. Provides the normalisation for the horizontal
component. Must be one-dimensional.

	second_values (iterable[float]) – Array or list to loop over, containing floats ranging from 0.0
to 1.0. Provides the normalisation for the vertical
component. Must be one-dimensional.

	map_grid (np.ndarray) – 2D numpy array proided by LinearSegmentedCmap2D.

	Returns:

	An N by 4 array (where N is the length of first_value and
second_value) of RGBA components.

	Return type:

	np.ndarray

	
class swiftsimio.visualisation.tools.cmaps.Cmap2D(name: str | None = None, description: str | None = None)

	Bases: object

A generic two dimensional implementation of a colour map.

Developer use only.

	
colors: List[List[float]] = None

	

	
coordinates: List[List[float]] = None

	

	
generate_color_map_grid()

	Generates the colour map grid and stores it in
_color_map_grid. Imeplementation dependent.

	
property color_map_grid

	Generates, or gets, the color map grid.

	
plot(ax, include_points: bool = False)

	Plot the color map on axes.

	Parameters:

	
	ax (matplotlib.Axis) – Axis to be plotted on.

	include_points (bool, optional) – If true, plot the individual colours as points that make
up the color map. Default: False.

	
class swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2D(colors: List[List[float]], coordinates: List[List[float]], name: str | None = None, description: str | None = None)

	Bases: Cmap2D

A two dimensional implementation of the linear segmented
colour map.

	
generate_color_map_grid()

	Generates the color map grid.

	
class swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2DHSV(colors: List[List[float]], coordinates: List[List[float]], name: str | None = None, description: str | None = None)

	Bases: Cmap2D

A two dimensional implementation of the linear segmented
colour map, using the HSV space to combine the colours.

	Parameters:

	
	colors (List[List[float]]) – Individual colors (at coordinates below) that make up
the color map.

	coordinates (List[List[float]]) – 2D coordinates in the plane to place the above colors
at.

	name (str, optional) – Name of this color map (metadata)

	description (str, optional) – Optional metadata description of this colour map.

See also

LinearSegmentedCmap2D, a cousin of this class that
combines colours using the RGB space rather than HSV used
here.

	
generate_color_map_grid()

	Generates the color map grid.

	
class swiftsimio.visualisation.tools.cmaps.ImageCmap2D(filename: str, name: str | None = None, description: str | None = None)

	Bases: Cmap2D

Creates a 2D color map from an image loaded from disk.

	
generate_color_map_grid()

	Loads the image from file and stores it as the internal
array.

swiftsimio.visualisation.projection module

Calls functions from projection_backends.

	
swiftsimio.visualisation.projection.project_pixel_grid(data: __SWIFTParticleDataset, boxsize: unyt_array, resolution: int, project: str | None = 'masses', region: None | unyt_array = None, mask: None | array = None, rotation_matrix: None | array = None, rotation_center: None | unyt_array = None, parallel: bool = False, backend: str = 'fast', periodic: bool = True)

	Creates a 2D projection of a SWIFT dataset, projected by the “project”
variable (e.g. if project is Temperature, we return: bar{T} = sum_j T_j
W_{ij}).

Default projection variable is mass. If it is None, then we don’t
weight with anything, providing a number density image.

	Parameters:

	
	data (__SWIFTParticleDataset) – The SWIFT dataset that you wish to visualise (get this from load)

	boxsize (unyt_array) – The box-size of the simulation.

	resolution (int) – The resolution of the image. All images returned are square, res
by res, pixel grids.

	project (str, optional) – Variable to project to get the weighted density of. By default, this
is mass. If you would like to mass-weight any other variable, you can
always create it as data.gas.my_variable = data.gas.other_variable
* data.gas.masses.

	region (unyt_array, optional) – Region, determines where the image will be created (this corresponds
to the left and right-hand edges, and top and bottom edges) if it is
not None. It should have a length of four or six, and take the form:
[x_min, x_max, y_min, y_max, {z_min, z_max}]

	mask (np.array, optional) – Allows only a sub-set of the particles in data to be visualised. Useful
in cases where you have read data out of a velociraptor catalogue,
or if you only want to visualise e.g. star forming particles. This boolean
mask is applied just before visualisation.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a projection
along the z axis.

	parallel (bool, optional) – Defaults to False, whether or not to create the image in parallel.
The parallel version of this function uses significantly more memory.

	backend (str, optional) – Backend to use. See documentation for details. Defaults to ‘fast’.

	periodic (bool, optional) – Account for periodic boundary conditions for the simulation box?
Defaults to True.

	Returns:

	image – Projected image with units of project / length^2, of size res x res.

	Return type:

	unyt_array

Notes

	Particles outside of this range are still considered if their smoothing
lengths overlap with the range.

	The returned array has x as the first component and y as the second component,
which is the opposite to what imshow requires. You should transpose the
array if you want it to be visualised the ‘right way up’.

	
swiftsimio.visualisation.projection.project_gas_pixel_grid(data: SWIFTDataset, resolution: int, project: str | None = 'masses', region: None | unyt_array = None, mask: None | array = None, rotation_matrix: None | array = None, rotation_center: None | unyt_array = None, parallel: bool = False, backend: str = 'fast', periodic: bool = True)

	Creates a 2D projection of a SWIFT dataset, projected by the “project”
variable (e.g. if project is Temperature, we return: bar{T} = sum_j T_j
W_{ij}).

This function is the same as project_gas but does not include units.

Default projection variable is mass. If it is None, then we don’t
weight with anything, providing a number density image.

	Parameters:

	
	data (SWIFTDataset) – The SWIFT dataset that you wish to visualise (get this from load)

	resolution (int) – The resolution of the image. All images returned are square, res
by res, pixel grids.

	project (str, optional) – Variable to project to get the weighted density of. By default, this
is mass. If you would like to mass-weight any other variable, you can
always create it as data.gas.my_variable = data.gas.other_variable
* data.gas.masses.

	region (unyt_array, optional) – Region, determines where the image will be created (this corresponds
to the left and right-hand edges, and top and bottom edges) if it is
not None. It should have a length of four or six, and take the form:
[x_min, x_max, y_min, y_max, {z_min, z_max}]

	mask (np.array, optional) – Allows only a sub-set of the particles in data to be visualised. Useful
in cases where you have read data out of a velociraptor catalogue,
or if you only want to visualise e.g. star forming particles. This boolean
mask is applied just before visualisation.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a projection
along the z axis.

	parallel (bool, optional) – Defaults to False, whether or not to create the image in parallel.
The parallel version of this function uses significantly more memory.

	backend (str, optional) – Backend to use. See documentation for details. Defaults to ‘fast’.

	periodic (bool, optional) – Account for periodic boundary conditions for the simulation box?
Defaults to True.

	Returns:

	image – Projected image with dimensions of project / length^2, of size
res x res.

	Return type:

	np.array

Notes

	Particles outside of this range are still considered if their smoothing
lengths overlap with the range.

	The returned array has x as the first component and y as the second component,
which is the opposite to what imshow requires. You should transpose the
array if you want it to be visualised the ‘right way up’.

	
swiftsimio.visualisation.projection.project_gas(data: SWIFTDataset, resolution: int, project: str | None = 'masses', region: None | unyt_array = None, mask: None | array = None, rotation_center: None | unyt_array = None, rotation_matrix: None | array = None, parallel: bool = False, backend: str = 'fast', periodic: bool = True)

	Creates a 2D projection of a SWIFT dataset, projected by the “project”
variable (e.g. if project is Temperature, we return: bar{T} = sum_j T_j
W_{ij}).

Default projection variable is mass. If it is None, then we don’t
weight with anything, providing a number density image.

	Parameters:

	
	data (SWIFTDataset) – The SWIFT dataset that you wish to visualise (get this from load)

	resolution (int) – The resolution of the image. All images returned are square, res
by res, pixel grids.

	project (str, optional) – Variable to project to get the weighted density of. By default, this
is mass. If you would like to mass-weight any other variable, you can
always create it as data.gas.my_variable = data.gas.other_variable
* data.gas.masses.

	region (unyt_array, optional) – Region, determines where the image will be created (this corresponds
to the left and right-hand edges, and top and bottom edges) if it is
not None. It should have a length of four or six, and take the form:
[x_min, x_max, y_min, y_max, {z_min, z_max}]

	mask (np.array, optional) – Allows only a sub-set of the particles in data to be visualised. Useful
in cases where you have read data out of a velociraptor catalogue,
or if you only want to visualise e.g. star forming particles. This boolean
mask is applied just before visualisation.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a projection
along the z axis.

	parallel (bool, optional) – Defaults to False, whether or not to create the image in parallel.
The parallel version of this function uses significantly more memory.

	backend (str, optional) – Backend to use. See documentation for details. Defaults to ‘fast’.

	periodic (bool, optional) – Account for periodic boundary conditions for the simulation box?
Defaults to True.

	Returns:

	image – Projected image with units of project / length^2, of size res x
res.

	Return type:

	unyt_array

Notes

	Particles outside of this range are still considered if their smoothing
lengths overlap with the range.

	The returned array has x as the first component and y as the second component,
which is the opposite to what imshow requires. You should transpose the
array if you want it to be visualised the ‘right way up’.

swiftsimio.visualisation.rotation module

Rotation matrix calculation routines.

	
swiftsimio.visualisation.rotation.rotation_matrix_from_vector(vector: float64, axis: str = 'z') → array

	Calculate a rotation matrix from a vector. The comparison vector is
assumed to be along an axis, x, y, or z (by default this is z). The
resulting rotation matrix gives a rotation matrix to align the
co-ordinate axes to make the projection be top-down along this axis.

	Parameters:

	
	vector (np.array[float64]) – 3D vector describing the top-down direction that you wish
to rotate to. For example, this could be the angular momentum
vector for a galaxy if you wish to produce a top-down projection.

	axis (str, optional) – String describing the axis to project along. This should be one
of x, y, or z. Defaults to z.

	Returns:

	rotation_matrix – Rotation matrix (3x3).

	Return type:

	np.array[float64]

swiftsimio.visualisation.slice module

Sub-module for slice plots in SWFITSIMio.

	
swiftsimio.visualisation.slice.kernel(r: float | float32, H: float | float32)

	Kernel implementation for swiftsimio.

	Parameters:

	
	r (float or float32) – Distance from particle

	H (float or float32) – Kernel width (i.e. radius of compact support of kernel)

	Returns:

	Contribution to density by particle at distance r

	Return type:

	float

Notes

Swiftsimio uses the Wendland-C2 kernel as described in [1].

References

[1]
Dehnen W., Aly H., 2012, MNRAS, 425, 1068

	
swiftsimio.visualisation.slice.slice_scatter(x: float64, y: float64, z: float64, m: float32, h: float32, z_slice: float64, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0, box_z: float64 = 0.0) → ndarray

	Creates a scatter plot of the given quantities for a particles in a data slice including periodic boundary effects.

	Parameters:

	
	x (array of float64) – x-positions of the particles. Must be bounded by [0, 1].

	y (array of float64) – y-positions of the particles. Must be bounded by [0, 1].

	z (array of float64) – z-positions of the particles. Must be bounded by [0, 1].

	m (array of float32) – masses (or otherwise weights) of the particles

	h (array of float32) – smoothing lengths of the particles

	z_slice (float64) – the position at which we wish to create the slice

	res (int) – the number of pixels.

	box_x (float64) – box size in x, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_z (float64) – box size in z, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	Returns:

	output array for scatterplot image

	Return type:

	ndarray of float32

See also

	scatter
	Create 3D scatter plot of SWIFT data

	scatter_parallel
	Create 3D scatter plot of SWIFT data in parallel

	slice_scatter_parallel
	Create scatter plot of a slice of data in parallel

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.slice.slice_scatter_parallel(x: float64, y: float64, z: float64, m: float32, h: float32, z_slice: float64, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0, box_z: float64 = 0.0) → ndarray

	Parallel implementation of slice_scatter

Creates a scatter plot of the given quantities for a particles in a data slice including periodic boundary effects.

	Parameters:

	
	x (array of float64) – x-positions of the particles. Must be bounded by [0, 1].

	y (array of float64) – y-positions of the particles. Must be bounded by [0, 1].

	z (array of float64) – z-positions of the particles. Must be bounded by [0, 1].

	m (array of float32) – masses (or otherwise weights) of the particles

	h (array of float32) – smoothing lengths of the particles

	z_slice (float64) – the position at which we wish to create the slice

	res (int) – the number of pixels.

	box_x (float64) – box size in x, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_z (float64) – box size in z, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	Returns:

	output array for scatterplot image

	Return type:

	ndarray of float32

See also

	scatter
	Create 3D scatter plot of SWIFT data

	scatter_parallel
	Create 3D scatter plot of SWIFT data in parallel

	slice_scatter
	Create scatter plot of a slice of data

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.slice.slice_gas_pixel_grid(data: SWIFTDataset, resolution: int, z_slice: unyt_quantity | None = None, project: str | None = 'masses', parallel: bool = False, rotation_matrix: None | array = None, rotation_center: None | unyt_array = None, region: None | unyt_array = None, periodic: bool = True)

	Creates a 2D slice of a SWIFT dataset, weighted by data field, in the
form of a pixel grid.

	Parameters:

	
	data (SWIFTDataset) – Dataset from which slice is extracted

	resolution (int) – Specifies size of return array

	z_slice (unyt_quantity) – Specifies the location along the z-axis where the slice is to be
extracted, relative to the rotation center or the origin of the box
if no rotation center is provided. If the perspective is rotated
this value refers to the location along the rotated z-axis.

	project (str, optional) – Data field to be projected. Default is mass. If None then simply
count number of particles

	parallel (bool) – used to determine if we will create the image in parallel. This
defaults to False, but can speed up the creation of large images
significantly at the cost of increased memory usage.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a slice
perpendicular to the z axis.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	region (unyt_array, optional) – determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom edges)
if it is not None. It should have a length of four, and take the form:

[x_min, x_max, y_min, y_max]

Particles outside of this range are still considered if their
smoothing lengths overlap with the range.

	periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

	Returns:

	Creates a resolution x resolution array and returns it,
without appropriate units.

	Return type:

	ndarray of float32

See also

	render_gas_voxel_grid
	Creates a 3D voxel grid from a SWIFT dataset

	
swiftsimio.visualisation.slice.slice_gas(data: SWIFTDataset, resolution: int, z_slice: unyt_quantity | None = None, project: str | None = 'masses', parallel: bool = False, rotation_matrix: None | array = None, rotation_center: None | unyt_array = None, region: None | unyt_array = None, periodic: bool = True)

	Creates a 2D slice of a SWIFT dataset, weighted by data field

	Parameters:

	
	data (SWIFTDataset) – Dataset from which slice is extracted

	resolution (int) – Specifies size of return array

	z_slice (unyt_quantity) – Specifies the location along the z-axis where the slice is to be
extracted, relative to the rotation center or the origin of the box
if no rotation center is provided. If the perspective is rotated
this value refers to the location along the rotated z-axis.

	project (str, optional) – Data field to be projected. Default is mass. If None then simply
count number of particles

	parallel (bool, optional) – used to determine if we will create the image in parallel. This
defaults to False, but can speed up the creation of large images
significantly at the cost of increased memory usage.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a slice
perpendicular to the z axis.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	region (array, optional) – determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom edges)
if it is not None. It should have a length of four, and take the form:

[x_min, x_max, y_min, y_max]

Particles outside of this range are still considered if their
smoothing lengths overlap with the range.

	periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

	Returns:

	a resolution x resolution array of the contribution
of the projected data field to the voxel grid from all of the particles

	Return type:

	ndarray of float32

See also

slice_gas_pixel

	render_gas
	Creates a 3D voxel grid of a SWIFT dataset with appropriate units

Notes

This is a wrapper function for slice_gas_pixel_grid ensuring that output units are
appropriate

swiftsimio.visualisation.smoothing_length_generation module

Routines for generating (approximate) smoothing lengths for particles
that do not usually carry a smoothing length field (e.g. dark matter).

	
swiftsimio.visualisation.smoothing_length_generation.generate_smoothing_lengths(coordinates: unyt_array | cosmo_array, boxsize: unyt_array | cosmo_array, kernel_gamma: float32, neighbours=32, speedup_fac=2, dimension=3)

	Generates smoothing lengths that encompass a number of neighbours specified here.

	Parameters:

	
	coordinates (unyt_array or cosmo_array) – a cosmo_array that gives the co-ordinates of all particles

	boxsize (unyt_array or cosmo_array) – the size of the box (3D)

	kernel_gamma (float32) – the kernel gamma of the kernel being used

	neighbours (int, optional) – the number of neighbours to encompass

	speedup_fac (int, optional) – a parameter that neighbours is divided by to provide a speed-up
by only searching for a lower number of neighbours. For example,
if neighbours is 32, and speedup_fac is 2, we only search for 16
(32 / 2) neighbours, and extend the smoothing length out to
(speedup)**(1/dimension) such that we encompass an approximately
higher number of neighbours. A factor of 2 gives smoothing lengths
the same as the full search within 10%, good enough for visualisation.

	dimension (int, optional) – the dimensionality of the problem (used for speedup_fac calculation).

	Returns:

	smoothing lengths – an unyt array of smoothing lengths.

	Return type:

	unyt_array

swiftsimio.visualisation.volume_render module

Basic volume render for SPH data. This takes the 3D positions
of the particles and projects them onto a grid.

	
swiftsimio.visualisation.volume_render.scatter(x: float64, y: float64, z: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0, box_z: float64 = 0.0) → ndarray

	Creates a weighted voxel grid

Computes contributions to a voxel grid from particles with positions
(x,`y`,`z`) with smoothing lengths h weighted by quantities m.
This includes periodic boundary effects.

	Parameters:

	
	x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

	z (np.array[float64]) – array of z-positions of the particles. Must be bounded by [0, 1].

	m (np.array[float32]) – array of masses (or otherwise weights) of the particles

	h (np.array[float32]) – array of smoothing lengths of the particles

	res (int) – the number of voxels along one axis, i.e. this returns a cube
of res * res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_z (float64) – box size in z, in the same rescaled length units as x, y and z.
Used for periodic wrapping

	Returns:

	voxel grid of quantity

	Return type:

	np.array[float32, float32, float32]

See also

	scatter_parallel
	Parallel implementation of this function

	slice_scatter
	Create scatter plot of a slice of data

	slice_scatter_parallel
	Create scatter plot of a slice of data in parallel

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.volume_render.scatter_parallel(x: float64, y: float64, z: float64, m: float32, h: float32, res: int, box_x: float64 = 0.0, box_y: float64 = 0.0, box_z: float64 = 0.0) → ndarray

	Parallel implementation of scatter

Compute contributions to a voxel grid from particles with positions
(x,`y`,`z`) with smoothing lengths h weighted by quantities m.
This ignores boundary effects.

	Parameters:

	
	x (array of float64) – array of x-positions of the particles. Must be bounded by [0, 1].

	y (array of float64) – array of y-positions of the particles. Must be bounded by [0, 1].

	z (array of float64) – array of z-positions of the particles. Must be bounded by [0, 1].

	m (array of float32) – array of masses (or otherwise weights) of the particles

	h (array of float32) – array of smoothing lengths of the particles

	res (int) – the number of voxels along one axis, i.e. this returns a cube
of res * res * res.

	box_x (float64) – box size in x, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_y (float64) – box size in y, in the same rescaled length units as x, y and z.
Used for periodic wrapping.

	box_z (float64) – box size in z, in the same rescaled length units as x, y and z.
Used for periodic wrapping

	Returns:

	voxel grid of quantity

	Return type:

	ndarray of float32

See also

	scatter
	Create voxel grid of quantity

	slice_scatter
	Create scatter plot of a slice of data

	slice_scatter_parallel
	Create scatter plot of a slice of data in parallel

Notes

Explicitly defining the types in this function allows
for a 25-50% performance improvement. In our testing, using numpy
floats and integers is also an improvement over using the numba ones.

	
swiftsimio.visualisation.volume_render.render_gas_voxel_grid(data: SWIFTDataset, resolution: int, project: str | None = 'masses', parallel: bool = False, rotation_matrix: None | array = None, rotation_center: None | unyt_array = None, region: None | unyt_array = None, periodic: bool = True)

	Creates a 3D render of a SWIFT dataset, weighted by data field, in the
form of a voxel grid.

	Parameters:

	
	data (SWIFTDataset) – Dataset from which slice is extracted

	resolution (int) – Specifies size of return array

	project (str, optional) – Data field to be projected. Default is mass. If None then simply
count number of particles

	parallel (bool) – used to determine if we will create the image in parallel. This
defaults to False, but can speed up the creation of large images
significantly at the cost of increased memory usage.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a volume render
viewed along the z axis.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	region (unyt_array, optional) – determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom
edges, and front and back edges) if it is not None. It should have a
length of six, and take the form:

[x_min, x_max, y_min, y_max, z_min, z_max]

Particles outside of this range are still considered if their
smoothing lengths overlap with the range.

	periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

	Returns:

	Creates a resolution x resolution x resolution array and
returns it, without appropriate units.

	Return type:

	ndarray of float32

See also

	slice_gas_pixel_grid
	Creates a 2D slice of a SWIFT dataset

	
swiftsimio.visualisation.volume_render.render_gas(data: SWIFTDataset, resolution: int, project: str | None = 'masses', parallel: bool = False, rotation_matrix: None | array = None, rotation_center: None | unyt_array = None, region: None | unyt_array = None, periodic: bool = True)

	Creates a 3D voxel grid of a SWIFT dataset, weighted by data field

	Parameters:

	
	data (SWIFTDataset) – Dataset from which slice is extracted

	resolution (int) – Specifies size of return array

	project (str, optional) – Data field to be projected. Default is mass. If None then simply
count number of particles

	parallel (bool) – used to determine if we will create the image in parallel. This
defaults to False, but can speed up the creation of large images
significantly at the cost of increased memory usage.

	rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the rotation of the box around
rotation_center. In the default case, this provides a volume render
viewed along the z axis.

	rotation_center (np.array, optional) – Center of the rotation. If you are trying to rotate around a galaxy, this
should be the most bound particle.

	region (unyt_array, optional) – determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom
edges, and front and back edges) if it is not None. It should have a
length of six, and take the form:
[x_min, x_max, y_min, y_max, z_min, z_max]
Particles outside of this range are still considered if their
smoothing lengths overlap with the range.

	periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

	Returns:

	a resolution x resolution x resolution array of the contribution
of the projected data field to the voxel grid from all of the particles

	Return type:

	ndarray of float32

See also

	slice_gas
	Creates a 2D slice of a SWIFT dataset with appropriate units

	render_gas_voxel_grid
	Creates a 3D voxel grid of a SWIFT dataset

Notes

This is a wrapper function for slice_gas_pixel_grid ensuring that output
units are appropriate

swiftsimio.accelerated module

Functions that can be accelerated by numba. Numba does not use classes, unfortunately.

	
swiftsimio.accelerated.ranges_from_array(array: array) → ndarray

	Finds contiguous ranges of IDs in sorted list of IDs

	Parameters:

	array (np.array of int) – sorted list of IDs

	Returns:

	list of length two arrays corresponding to contiguous
ranges of IDs (inclusive) in the input array

	Return type:

	np.ndarray

Examples

The array

[0, 1, 2, 3, 5, 6, 7, 9, 11, 12, 13]

would return

[[0, 4], [5, 8], [9, 10], [11, 14]]

	
swiftsimio.accelerated.read_ranges_from_file_unchunked(handle: ~h5py._hl.dataset.Dataset, ranges: ~numpy.ndarray, output_shape: ~typing.Tuple, output_type: type = <class 'numpy.float64'>, columns: ~numpy.lib.index_tricks.IndexExpression = slice(None, None, None)) → array

	Takes a hdf5 dataset, and the set of ranges from
ranges_from_array, and reads only those ranges from the file.

Unfortunately this functionality is not built into HDF5.

	Parameters:

	
	handle (Dataset) – HDF5 dataset to slice data from

	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	output_shape (Tuple) – Resultant shape of output.

	output_type (type, optional) – numpy type of output elements. If not supplied, we assume np.float64.

	columns (np.lib.index_tricks.IndexExpression, optional) – Selector for columns if using a multi-dimensional array. If the array is only
a single dimension this is not used.

	Returns:

	array – Result from reading only the relevant values from handle.

	Return type:

	np.ndarray

	
swiftsimio.accelerated.index_dataset(handle: Dataset, mask_array: array) → array

	Indexes the dataset using the mask array.

This is not currently a feature of h5py. (March 2019)

	Parameters:

	
	handle (Dataset) – data to be indexed

	mask_array (np.array) – mask used to index data

	Returns:

	Subset of the data specified by the mask

	Return type:

	np.array

	
swiftsimio.accelerated.concatenate_ranges(ranges: ndarray) → ndarray

	Returns an array of ranges with consecutive ranges merged if there is no
gap between them

	Parameters:

	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	Returns:

	two dimensional array of ranges

	Return type:

	np.ndarray

Examples

>>> concatenate_ranges([[1,5],[6,10],[12,15]])
np.ndarray([[1,10],[12,15]])

	
swiftsimio.accelerated.get_chunk_ranges(ranges: ndarray, chunk_size: ndarray, array_length: int) → ndarray

	Return indices indicating which hdf5 chunk each range from ranges belongs to

	Parameters:

	
	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	chunk_size (int) – size of the hdf5 dataset chunks

	array_length (int) – size of the dataset

	Returns:

	two dimensional array of bounds for the chunks that contain each range from
ranges

	Return type:

	np.ndarray

	
swiftsimio.accelerated.expand_ranges(ranges: ndarray) → array

	Return an array of indices that are within the specified ranges

	Parameters:

	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	Returns:

	1D array of indices that fall within each range specified in ranges

	Return type:

	np.array

	
swiftsimio.accelerated.extract_ranges_from_chunks(array: ndarray, chunks: ndarray, ranges: ndarray) → ndarray

	Returns elements from array that are located within specified ranges

array is a portion of the dataset being read consisting of all the chunks
that contain the ranges specified in ranges. The chunks array contains
the indices of the upper and lower bounds of these chunks. To find the
elements of the dataset that lie within the specified ranges we first create
an array indexing which chunk each range belongs to. From this information
we create an array of adjusted ranges that takes into account that the array
is not the whole dataset. We then return the values in array that are
within the adjusted ranges.

	Parameters:

	
	array (np.ndarray) – array containing data read in from snapshot

	chunks (np.ndarray) – two dimensional array of bounds for the chunks that contain each range from
ranges

	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	Returns:

	subset of array whose elements are within each range in ranges

	Return type:

	np.ndarray

	
swiftsimio.accelerated.read_ranges_from_file_chunked(handle: ~h5py._hl.dataset.Dataset, ranges: ~numpy.ndarray, output_shape: ~typing.Tuple, output_type: type = <class 'numpy.float64'>, columns: ~numpy.lib.index_tricks.IndexExpression = slice(None, None, None)) → array

	Takes a hdf5 dataset, and the set of ranges from
ranges_from_array, and reads only those ranges from the file.

Unfortunately this functionality is not built into HDF5.

	Parameters:

	
	handle (Dataset) – HDF5 dataset to slice data from

	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	output_shape (Tuple) – Resultant shape of output.

	output_type (type, optional) – numpy type of output elements. If not supplied, we assume np.float64.

	columns (np.lib.index_tricks.IndexExpression, optional) – Selector for columns if using a multi-dimensional array. If the array is only
a single dimension this is not used.

	Returns:

	array – Result from reading only the relevant values from handle.

	Return type:

	np.ndarray

	
swiftsimio.accelerated.read_ranges_from_file(handle: ~h5py._hl.dataset.Dataset, ranges: ~numpy.ndarray, output_shape: ~typing.Tuple, output_type: type = <class 'numpy.float64'>, columns: ~numpy.lib.index_tricks.IndexExpression = slice(None, None, None)) → array

	Wrapper function to correctly select which version of read_ranges_from_file
should be used

	Parameters:

	
	handle (Dataset) – HDF5 dataset to slice data from

	ranges (np.ndarray) – Array of ranges (see ranges_from_array())

	output_shape (Tuple) – Resultant shape of output.

	output_type (type, optional) – numpy type of output elements. If not supplied, we assume np.float64.

	columns (np.lib.index_tricks.IndexExpression, optional) – Selector for columns if using a multi-dimensional array. If the array is only
a single dimension this is not used.

	Returns:

	array – Result from reading only the relevant values from handle.

	Return type:

	np.ndarray

See also

	read_ranges_from_file_chunked
	reads data within specified ranges for chunked hdf5

file, unchunked

	
swiftsimio.accelerated.list_of_strings_to_arrays(lines: List[str]) → array

	Converts a list of space-delimited values to arrays.

	Parameters:

	lines (List[str]) – List of strings containing numbers separated by a set of spaces.

	Returns:

	arrays – List of numpy arrays, one per column.

	Return type:

	List[np.array]

Notes

Currently not suitable for numba acceleration due to mixed datatype usage.

swiftsimio.conversions module

Includes conversions between SWIFT internal values and
astropy ones for convenience.

	
swiftsimio.conversions.swift_cosmology_to_astropy(cosmo: dict, units) → dict

	

swiftsimio.masks module

Loading functions and objects that use masked information from the SWIFT
snapshots.

	
class swiftsimio.masks.SWIFTMask(metadata: SWIFTMetadata, spatial_only=True)

	Bases: object

Main masking object. This can have masks for any present particle field in it.
Pass in the SWIFTMetadata.

	
constrain_mask(ptype: str, quantity: str, lower: unyt_quantity, upper: unyt_quantity)

	Constrains the mask further for a given particle type, and bounds a
quantity between lower and upper values.

We update the mask such that

lower < ptype.quantity <= upper

The quantities must have units attached.

	Parameters:

	
	ptype (str) – particle type

	quantity (str) – quantity being constrained

	lower (unyt.array.unyt_quantity) – constraint lower bound

	upper (unyt.array.unyt_quantity) – constraint upper bound

See also

	constrain_spatial
	method to generate spatially constrained cell mask

	
constrain_spatial(restrict)

	Uses the cell metadata to create a spatial mask.

This mask is necessarily approximate and is coarse-grained to the cell size.

	Parameters:

	restrict (list) – length 3 list of length two arrays giving the lower and
upper bounds for that axis, e.g.

	restrict = [
	[0.5, 0.7],
[0.1, 0.9],
[0.0, 0.1]

]

These values must have units associated with them. It is also acceptable
to have a row as None to not restrict in this direction.

See also

	constrain_mask
	method to further refine mask

	
convert_masks_to_ranges()

	Converts the masks to range masks so that they take up less space.

This is non-reversible. It is also not required, but can help save space
on highly constrained machines before you start reading in the data.

If you don’t know what you are doing please don’t use this.

	
get_masked_counts_offsets() -> (typing.Dict[str, <built-in function array>], typing.Dict[str, <built-in function array>])

	Returns the particle counts and offsets in cells selected by the mask

	Returns:

	Dictionaries containing the particle offets and counts for each particle
type. For example, the particle counts dictionary would be of the form

{"gas": [g_0, g_1, ...],
 "dark matter": [bh_0, bh_1, ...], ...}

where the keys would be each of the particle types and values are arrays
of the number of corresponding particles in each cell (in this case there
would be g_0 gas particles in the first cell, g_1 in the second, etc.).
The structure of the dictionaries is the same for the offsets, with the
arrays now storing the offset of the first particle in the cell.

	Return type:

	Dict[str, np.array], Dict[str, np.array]

swiftsimio.objects module

Contains global objects, e.g. the superclass version of the
unyt_array that we use, called cosmo_array.

	
exception swiftsimio.objects.InvalidScaleFactor(message=None, *args)

	Bases: Exception

Raised when a scale factor is invalid, such as when adding
two cosmo_factors with inconsistent scale factors.

	
class swiftsimio.objects.cosmo_factor(expr, scale_factor)

	Bases: object

Cosmology factor class for storing and computing conversion between
comoving and physical coordinates.

This takes the expected exponent of the array that can be parsed
by sympy, and the current value of the cosmological scale factor a.

This should be given as the conversion from comoving to physical, i.e.

r = cosmo_factor * r’ with r in physical and r’ comoving

Examples

Typically this would make cosmo_factor = a for the conversion between
comoving positions r’ and physical co-ordinates r.

To do this, use the a imported from objects multiplied as you’d like:

density_cosmo_factor = cosmo_factor(a**3, scale_factor=0.97)

	
property a_factor

	The a-factor for the unit.

e.g. for density this is 1 / a**3.

	Returns:

	the a-factor for given unit

	Return type:

	float

	
property redshift

	Compute the redshift from the scale factor.

	Returns:

	redshift from the given scale factor

	Return type:

	float

Notes

Returns the redshift
..math:: z = frac{1}{a} - 1,
where :math: a is the scale factor

	
class swiftsimio.objects.cosmo_array(input_array, units=None, registry=None, dtype=None, bypass_validation=False, input_units=None, name=None, cosmo_factor=None, comoving=True, compression=None)

	Bases: unyt_array

Cosmology array class.

This inherits from the unyt.unyt_array, and adds
three variables: compression, cosmo_factor, and comoving.
Data is assumed to be comoving when passed to the object but you
can override this by setting the latter flag to be False.

	Parameters:

	unyt_array (unyt.unyt_array) – the inherited unyt_array

	
comoving

	if True then the array is in comoving co-ordinates, and if
False then it is in physical units.

	Type:

	bool

	
cosmo_factor

	Object to store conversion data between comoving and physical coordinates

	Type:

	float

	
compression

	String describing any compression that was applied to this array in the
hdf5 file.

	Type:

	string

	
astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:

	
	dtype (str or dtype) – Typecode or data-type to which the array is cast.

	order ({'C', 'F', 'A', 'K'}, optional) – Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

	casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) – Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	’no’ means the data types should not be cast at all.

	’equiv’ means only byte-order changes are allowed.

	’safe’ means only casts which can preserve values are allowed.

	’same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	’unsafe’ means any data conversions may be done.

	subok (bool, optional) – If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

	copy (bool, optional) – By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:

	arr_t – Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input parameter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Return type:

	ndarray

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only
for “unsafe” casting. Casting to multiple fields is allowed, but
casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires
that the string dtype length is long enough to store the max
integer/float value converted.

	Raises:

	ComplexWarning – When casting from complex to float or int. To avoid this,
 one should use a.real.astype(t).

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

	
in_units(*args, **kwargs)

	Creates a copy of this array with the data converted to the
supplied units, and returns it.

Optionally, an equivalence can be specified to convert to an
equivalent quantity which is not in the same dimensions.

	Parameters:

	
	units (Unit object or string) – The units you want to get a new quantity in.

	equivalence (string, optional) – The equivalence you wish to use. To see which equivalencies
are supported for this object, try the list_equivalencies
method. Default: None

	kwargs (optional) – Any additional keyword arguments are supplied to the
equivalence

	Raises:

	
	If the provided unit does not have the same dimensions as the array –

	this will raise a UnitConversionError –

Examples

>>> from unyt import c, gram
>>> m = 10*gram
>>> E = m*c**2
>>> print(E.in_units('erg'))
8.987551787368176e+21 erg
>>> print(E.in_units('J'))
898755178736817.6 J

	
byteswap(inplace=False)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.
Arrays of byte-strings are not swapped. The real and imaginary
parts of a complex number are swapped individually.

	Parameters:

	inplace (bool, optional) – If True, swap bytes in-place, default is False.

	Returns:

	out – The byteswapped array. If inplace is True, this is
a view to self.

	Return type:

	ndarray

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

	A.newbyteorder().byteswap() produces an array with the same values
	but different representation in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
 0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
 0, 3], dtype=uint8)

	
compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

	numpy.compress
	equivalent function

	
diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also

	numpy.diagonal
	equivalent function

	
flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:

	order ({'C', 'F', 'A', 'K'}, optional) – ‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran-
style) order. ‘A’ means to flatten in column-major
order if a is Fortran contiguous in memory,
row-major order otherwise. ‘K’ means to flatten
a in the order the elements occur in memory.
The default is ‘C’.

	Returns:

	y – A copy of the input array, flattened to one dimension.

	Return type:

	ndarray

See also

	ravel
	Return a flattened array.

	flat
	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

	
newbyteorder(new_order='S', /)

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

	Parameters:

	new_order (string, optional) – Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

	’S’ - swap dtype from current to opposite endian

	{‘<’, ‘little’} - little endian

	{‘>’, ‘big’} - big endian

	{‘=’, ‘native’} - native order, equivalent to sys.byteorder

	{‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order.

	Returns:

	new_arr – New array object with the dtype reflecting given change to the
byte order.

	Return type:

	array

	
ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel
	equivalent function

	ndarray.flat
	a flat iterator on the array.

	
repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat
	equivalent function

	
reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape
	equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows
the elements of the shape parameter to be passed in as separate arguments.
For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

	
swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes
	equivalent function

	
take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take
	equivalent function

	
transpose(*axes)

	Returns a view of the array with axes transposed.

Refer to numpy.transpose for full documentation.

	Parameters:

	axes (None, tuple of ints, or n ints) –
	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means that the
array’s i-th axis becomes the transposed array’s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form).

	Returns:

	p – View of the array with its axes suitably permuted.

	Return type:

	ndarray

See also

	transpose
	Equivalent function.

	ndarray.T
	Array property returning the array transposed.

	ndarray.reshape
	Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

	
view([dtype][, type])

	New view of array with the same data.

Note

Passing None for dtype is different from omitting the parameter,
since the former invokes dtype(None) which is an alias for
dtype('float_').

	Parameters:

	
	dtype (data-type or ndarray sub-class, optional) – Data-type descriptor of the returned view, e.g., float32 or int16.
Omitting it results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

	type (Python type, optional) – Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a regular
array to a structured array), then the last axis of a must be
contiguous. This axis will be resized in the result.

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array
had to be C-contiguous.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
>>> y = x[:, ::2]
>>> y
array([[1, 3],
 [4, 6]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 ...
ValueError: To change to a dtype of a different size, the last axis must be contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 3)],
 [(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a
contiguous last axis, even if the rest of the axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
>>> x.transpose(1, 0, 2).view(np.int16)
array([[[256, 770],
 [3340, 3854]],

 [[1284, 1798],
 [4368, 4882]],

 [[2312, 2826],
 [5396, 5910]]], dtype=int16)

	
property T

	View of the transposed array.

Same as self.transpose().

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.T
array([[1, 3],
 [2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.T
array([1, 2, 3, 4])

See also

transpose

	
property ua

	Return an array filled with ones with the same units as this array

Example

>>> from unyt import km
>>> a = [4, 5, 6]*km
>>> a.unit_array
unyt_array([1, 1, 1], 'km')
>>> print(a + 7*a.unit_array)
[11 12 13] km

	
property unit_array

	Return an array filled with ones with the same units as this array

Example

>>> from unyt import km
>>> a = [4, 5, 6]*km
>>> a.unit_array
unyt_array([1, 1, 1], 'km')
>>> print(a + 7*a.unit_array)
[11 12 13] km

	
convert_to_comoving() → None

	Convert the internal data to be in comoving units.

	
convert_to_physical() → None

	Convert the internal data to be in physical units.

	
to_physical()

	Creates a copy of the data in physical units.

	Returns:

	copy of cosmo_array in physical units

	Return type:

	cosmo_array

	
to_comoving()

	Creates a copy of the data in comoving units.

	Returns:

	copy of cosmo_array in comoving units

	Return type:

	cosmo_array

	
compatible_with_comoving()

	Is this cosmo_array compatible with a comoving cosmo_array?

This is the case if the cosmo_array is comoving, or if the scale factor
exponent is 0 (cosmo_factor.a_factor() == 1)

	
compatible_with_physical()

	Is this cosmo_array compatible with a physical cosmo_array?

This is the case if the cosmo_array is physical, or if the scale factor
exponent is 0 (cosmo_factor.a_factor == 1)

	
classmethod from_astropy(arr, unit_registry=None, comoving=True, cosmo_factor=None, compression=None)

	Convert an AstroPy “Quantity” to a cosmo_array.

	Parameters:

	
	arr (AstroPy Quantity) – The Quantity to convert from.

	unit_registry (yt UnitRegistry, optional) – A yt unit registry to use in the conversion. If one is not supplied, the
default one will be used.

	comoving (bool) – if True then the array is in comoving co-ordinates, and if False then it is in
physical units.

	cosmo_factor (float) – Object to store conversion data between comoving and physical coordinates

	compression (string) – String describing any compression that was applied to this array in the hdf5
file.

Example

>>> from astropy.units import kpc
>>> cosmo_array.from_astropy([1, 2, 3] * kpc)
cosmo_array([1., 2., 3.], 'kpc')

	
classmethod from_pint(arr, unit_registry=None, comoving=True, cosmo_factor=None, compression=None)

	Convert a Pint “Quantity” to a cosmo_array.

	Parameters:

	
	arr (Pint Quantity) – The Quantity to convert from.

	unit_registry (yt UnitRegistry, optional) – A yt unit registry to use in the conversion. If one is not
supplied, the default one will be used.

	comoving (bool) – if True then the array is in comoving co-ordinates, and if False then it is in
physical units.

	cosmo_factor (float) – Object to store conversion data between comoving and physical coordinates

	compression (string) – String describing any compression that was applied to this array in the hdf5
file.

Examples

>>> from pint import UnitRegistry
>>> import numpy as np
>>> ureg = UnitRegistry()
>>> a = np.arange(4)
>>> b = ureg.Quantity(a, "erg/cm**3")
>>> b
<Quantity([0 1 2 3], 'erg / centimeter ** 3')>
>>> c = cosmo_array.from_pint(b)
>>> c
cosmo_array([0, 1, 2, 3], 'erg/cm**3')

swiftsimio.optional_packages module

Imports of optional packages.

This includes:

	tqdm: progress bars

	scipy.spatial: KDTrees

	numba/cuda: visualisation

	
swiftsimio.optional_packages.tqdm(x, *args, **kwargs)

	

	
swiftsimio.optional_packages.cuda_jit(*args, **kwargs)

	

swiftsimio.reader module

This file contains four major objects:

	SWIFTUnits, which is a unit system that can be queried for units (and converts arrays
to relevant unyt arrays when read from the HDF5 file)

	SWIFTMetadata, which contains all of the metadata from the file

	__SWIFTParticleDataset, which contains particle information but should never be
directly accessed. Use generate_dataset to create one of these. The reasoning
here is that properties can only be added to the class afterwards, and not
directly in an _instance_ of the class.

	SWIFTDataset, a container class for all of the above.

	
class swiftsimio.reader.MassTable(base_mass_table: array, mass_units: unyt_quantity)

	Bases: object

Extracts a mass table to local variables based on the
particle type names.

	
class swiftsimio.reader.MappingTable(data: ndarray, named_columns_x: List[str], named_columns_y: List[str], named_columns_x_name: str, named_columns_y_name: str)

	Bases: object

A mapping table from one named column instance to the other.
Initially designed for the mapping between dust and elements.

	
class swiftsimio.reader.SWIFTUnits(filename)

	Bases: object

Generates a unyt system that can then be used with the SWIFT data.

These give the unit mass, length, time, current, and temperature as
unyt unit variables in simulation units. I.e. you can take any value
that you get out of the code and multiply it by the appropriate values
to get it ‘unyt-ified’ with the correct units.

	
mass

	unit for mass used

	Type:

	float

	
length

	unit for length used

	Type:

	float

	
time

	unit for time used

	Type:

	float

	
current

	unit for current used

	Type:

	float

	
temperature

	unit for temperature used

	Type:

	float

	
get_unit_dictionary()

	Store unit data and metadata

Length 1 arrays are used to store the unit data. This dictionary
also contains the metadata information that connects the unyt
objects to the names that are stored in the SWIFT snapshots.

	
class swiftsimio.reader.SWIFTMetadata(filename, units: SWIFTUnits)

	Bases: object

Loads all metadata (apart from Units, those are handled by SWIFTUnits)
into dictionaries.

This also does some extra parsing on some well-used metadata.

	
header: dict

	

	
filename: str

	

	
units: SWIFTUnits

	

	
get_metadata()

	Loads the metadata as specified in metadata.metadata_fields.

	
get_named_column_metadata()

	Loads the custom named column metadata (if it exists) from
SubgridScheme/NamedColumns.

	
get_mapping_metadata()

	Gets the mappings based on the named columns (must have already been read),
from the form:

SubgridScheme/{X}To{Y}Mapping.

Includes a hack of Dust -> Grains that will be deprecated.

	
postprocess_header()

	Some minor postprocessing on the header to local variables.

	
load_particle_types()

	Loads the particle types and metadata into objects:

metadata.<type>_properties

This contains six arrays,

metadata.<type>_properties.field_names
metadata.<type>_properties.field_paths
metadata.<type>_properties.field_units
metadata.<type>_properties.field_cosmologies
metadata.<type>_properties.field_descriptions
metadata.<type>_properties.field_compressions

As well as some more information about the particle type.

	
extract_cosmology()

	Creates an astropy.cosmology object from the internal cosmology system.

This will be saved as self.cosmology.

	
property present_particle_types

	The particle types that are present in the file.

	
property present_particle_names

	The particle _names_ that are present in the simulation.

	
property code_info

	Gets a nicely printed set of code information with:

Name (Git Branch)
Git Revision
Git Date

	
property compiler_info

	Gets information about the compiler and formats it as:

Compiler Name (Compiler Version)
MPI library

	
property library_info

	Gets information about the libraries used and formats it as:

FFTW vFFTW library version
GSL vGSL library version
HDF5 vHDF5 library version

	
property hydro_info

	Gets information about the hydro scheme and formats it as:

Scheme
Kernel function in DimensionD
eta = Kernel eta (Kernel target N_ngb N_{ngb})
$C_{rm CFL}$ = CFL parameter

	
property viscosity_info

	Gets information about the viscosity scheme and formats it as:

Viscosity Model
$alpha_{V, 0}$ = Alpha viscosity, ell_V = Viscosity decay length [internal units], $beta_V$ = Beta viscosity
Alpha viscosity (min) < $alpha_V$ < Alpha viscosity (max)

	
property diffusion_info

	Gets information about the diffusion scheme and formats it as:

 swiftsimio.statistics module

swiftsimio.statistics module

Reader for the statistics file.

	
class swiftsimio.statistics.SWIFTStatisticsFile(filename: str)

	Bases: object

SWIFT statistics files (e.g. SFR.txt, energy.txt) reader.

	
header_names: List[str]

	

	
header_units: Dict[str, unyt_quantity]

	

	
header_snake_case_names: List[str]

	

	
raw_lines: List[str]

	

 swiftsimio.subset_writer module

swiftsimio.subset_writer module

Contains functions for reading a subset of a SWIFT dataset and writing
it to a new file.

	
swiftsimio.subset_writer.get_swift_name(name: str) → str

	Returns the particle type name used in SWIFT

	Parameters:

	name (str) – swiftsimio particle name (e.g. gas)

	Returns:

	SWIFT particle type corresponding to name (e.g. PartType0)

	Return type:

	str

	
swiftsimio.subset_writer.get_dataset_mask(mask: SWIFTMask, dataset_name: str, suffix: str | None = None) → ndarray

	Return appropriate mask or mask size for given dataset

	Parameters:

	
	mask (SWIFTMask) – the mask used to define subset that is written to new snapshot

	dataset_name (str) – the name of the dataset we’re interested in. This is the name from the
hdf5 file (i.e. “PartType0”, rather than “gas”)

	suffix (str, optional) – specify a suffix string to append to dataset underscore name to return
something other than the dataset mask. This is specifically used for
returning the mask size by setting suffix=”_size”, which would return,
for example mask.gas_size

	Returns:

	mask for the appropriate dataset

	Return type:

	np.ndarray

	
swiftsimio.subset_writer.find_datasets(input_file: File, dataset_names=[], path=None, recurse=False) → List[str]

	Recursively finds all the datasets in the snapshot and writes them to a list

	Parameters:

	
	input_file (h5py.File) – hdf5 file handle for snapshot

	dataset_names (list of str, optional) – names of datasets found in the snapshot

	path (str, optional) – the path to the current location in the snapshot

	recurse (bool, optional) – flag to indicate whether we’re recursing or not

	Returns:

	dataset_names – names of datasets in path in input_file

	Return type:

	list of str

	
swiftsimio.subset_writer.find_links(input_file: File, link_names: List | None = [], link_paths: List | None = [], path: str | None = None)

	Recursively finds all the links in the snapshot and writes them to a list

	Parameters:

	
	input_file (h5py.File) – hdf5 file handle for snapshot

	link_names (list of str, optional) – names of links found in the snapshot

	link_paths (list of str, optional) – paths where links found in the snapshot point to

	path (str, optional) – the path to the current location in the snapshot

	Returns:

	link_names, link_paths – lists of the names and links of paths in input_file

	Return type:

	list of str, list of str

	
swiftsimio.subset_writer.update_metadata_counts(infile: File, outfile: File, mask: SWIFTMask)

	Recalculates the cell particle counts and offsets based on the particles present in the subset

	Parameters:

	
	infile (h5py.File) – File handle for input snapshot

	outfile (h5py.File) – File handle for output subset of snapshot

	mask (SWIFTMask) – the mask being used to define subset

	
swiftsimio.subset_writer.write_metadata(infile: File, outfile: File, links_list: List[str], mask: SWIFTMask)

	Copy over all the metadata from snapshot to output file

	Parameters:

	
	infile (h5py.File) – hdf5 file handle for input snapshot

	outfile (h5py.File) – hdf5 file handle for output snapshot

	links_list (list of str) – names of links found in the snapshot

	mask (SWIFTMask) – the mask being used to define subset

	
swiftsimio.subset_writer.write_datasubset(infile: File, outfile: File, mask: SWIFTMask, dataset_names: List[str], links_list: List[str])

	Writes subset of all datasets contained in snapshot according to specified mask
:param infile: hdf5 file handle for input snapshot
:type infile: h5py.File
:param outfile: hdf5 file handle for output snapshot
:type outfile: h5py.File
:param mask: the mask used to define subset that is written to new snapshot
:type mask: SWIFTMask
:param dataset_names: names of datasets found in the snapshot
:type dataset_names: list of str
:param links_list: names of links found in the snapshot
:type links_list: list of str

	
swiftsimio.subset_writer.connect_links(outfile: File, links_list: List[str], paths_list: List[str])

	Connects up the links to the appropriate path

	Parameters:

	
	outfile (h5py.File) – file containing the hdf5 subsnapshot

	links_list (list of str) – list of names of soft links

	paths_list (list of str) – list of paths specifying how to link each soft link

	
swiftsimio.subset_writer.write_subset(output_file: str, mask: SWIFTMask)

	Writes subset of snapshot according to specified mask to new snapshot file

	Parameters:

	
	input_file (str) – path to input snapshot

	output_file (str) – path to output snapshot

	mask (SWIFTMask) – the mask used to define subset that is written to new snapshot

 swiftsimio.swiftsnap module

swiftsimio.swiftsnap module

swiftsnap allows you to check the metadata of a SWIFT snapshot easily
from the command line. See the -h invocation for more details.

	
swiftsimio.swiftsnap.decode(bytestring: bytes) → str

	

	
swiftsimio.swiftsnap.swiftsnap()

	

 swiftsimio.units module

swiftsimio.units module

Contains unit systems that may be useful to astronomers. In particular,
it contains the cosmo_units which can be considered Gadget-oid default units,
with

	Unit length = Mpc

	Unit velocity = km/s

	Unit mass = 10^10 Msun

	Unit temperature = K

Also contains unit conversion factors, to simplify units wherever possible.

 swiftsimio.writer module

swiftsimio.writer module

Contains functions and objects for creating SWIFT datasets.

Essentially all you want to do is use SWIFTWriterDataset and fill the attributes
that are required for each particle type. More information is available in the
README.

	
swiftsimio.writer.get_dimensions(dimension: <module 'unyt.dimensions' from '/home/docs/checkouts/readthedocs.org/user_builds/swiftsimio/envs/stable/lib/python3.8/site-packages/unyt/dimensions.py'>) → dict

	Returns exponents corresponding to base dimensions for given unyt dimensions object

	Parameters:

	dimension (unyt.dimensions) – dimension for which we’re identifying the exponents

	Returns:

	exp_array – array of exponents corresponding to each base dimension

	Return type:

	np.ndarray

Examples

>>> get_dimensions(unyt.dimensions.velocity)
{
 "(mass)": 0,
 "(length)": 1,
 "(time)": -1,
 "(temperature)": 0,
 "(current)": 0,
}

	
swiftsimio.writer.generate_getter(name: str)

	Generates a function that gets the unyt array for name.

	Parameters:

	name (str) – name of data field

	Returns:

	getter – function that returns unyt array for name

	Return type:

	function

	
swiftsimio.writer.generate_setter(name: str, dimensions, unit_system: UnitSystem | str)

	Generates a function that sets self._name to the value that is passed to it.

	Parameters:

	
	name (str) – string to set self._name to

	dimensions (unyt.dimensions) – physical dimension of self._name (for consistency check)

	unit_system (unyt.UnitSystem or str) – unit system of self._name

	Returns:

	setter – function to set self._name

	Return type:

	function

	
swiftsimio.writer.generate_deleter(name: str)

	Generates a function that destroys self._name (sets it back to None).

	Parameters:

	name (str) – name of object to be destroyed

	Returns:

	deleter – function to delete self._name

	Return type:

	function

	
swiftsimio.writer.generate_dataset(unit_system: ~unyt.unit_systems.UnitSystem | str, particle_type: int, unit_fields_generate_units: ~typing.Callable[[...], dict] = <function generate_units>)

	Generates a SWIFTWriterParticleDataset _class_ that corresponds to the
particle type given.

We _must_ do the following _outside_ of the class itself, as one
can assign properties to a _class_ but not _within_ a class
dynamically.

Here we loop through all of the possible properties in the metadata file.
We then use the builtin property() function and some generators to
create setters and getters for those properties. This will allow them
to be accessed from outside by using SWIFTWriterParticleDataset.name, where
the name is, for example, coordinates.

	Parameters:

	
	unit_system (unyt.UnitSystem or str) – unit system of the dataset

	particle_type (int) – the particle type of the dataset. Numbering convention is the same as
SWIFT, with 0 corresponding to gas, etc. as usual.

	unit_fields_generate_units (callable, optional) – collection of properties in metadata file for which to create setters
and getters

	Returns:

	an empty dataset for the given particle type

	Return type:

	SWIFTWriterParticleDataset

	
class swiftsimio.writer.SWIFTWriterDataset(unit_system: ~unyt.unit_systems.UnitSystem | str, box_size: list | ~unyt.array.unyt_quantity, dimension=3, compress=True, extra_header: None | dict = None, unit_fields_generate_units: ~typing.Callable[[...], dict] = <function generate_units>, scale_factor: ~numpy.float32 = 1.0)

	Bases: object

The SWIFT writer dataset. This is used to store all particle arrays and do
some extra processing before writing a HDF5 file containing:

	Fully consistent unit system

	All required arrays for SWIFT to start

	Required metadata (all automatic, apart from those required by __init__)

	
create_particle_datasets()

	Creates particle dataset for each particle type in the metadata with
associated units

	
write(filename: str)

	Writes the information in the dataset to file.

	Parameters:

	filename (str) – file to write to

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 swiftsimio	

 	
 	
 swiftsimio.accelerated	

 	
 	
 swiftsimio.conversions	

 	
 	
 swiftsimio.initial_conditions	

 	
 	
 swiftsimio.initial_conditions.generate_particles	

 	
 	
 swiftsimio.masks	

 	
 	
 swiftsimio.objects	

 	
 	
 swiftsimio.optional_packages	

 	
 	
 swiftsimio.reader	

 	
 	
 swiftsimio.statistics	

 	
 	
 swiftsimio.subset_writer	

 	
 	
 swiftsimio.swiftsnap	

 	
 	
 swiftsimio.units	

 	
 	
 swiftsimio.visualisation	

 	
 	
 swiftsimio.visualisation.projection	

 	
 	
 swiftsimio.visualisation.projection_backends	

 	
 	
 swiftsimio.visualisation.projection_backends.fast	

 	
 	
 swiftsimio.visualisation.projection_backends.gpu	

 	
 	
 swiftsimio.visualisation.projection_backends.histogram	

 	
 	
 swiftsimio.visualisation.projection_backends.kernels	

 	
 	
 swiftsimio.visualisation.projection_backends.reference	

 	
 	
 swiftsimio.visualisation.projection_backends.renormalised	

 	
 	
 swiftsimio.visualisation.projection_backends.subsampled	

 	
 	
 swiftsimio.visualisation.projection_backends.subsampled_extreme	

 	
 	
 swiftsimio.visualisation.rotation	

 	
 	
 swiftsimio.visualisation.slice	

 	
 	
 swiftsimio.visualisation.smoothing_length_generation	

 	
 	
 swiftsimio.visualisation.tools	

 	
 	
 swiftsimio.visualisation.tools.cmaps	

 	
 	
 swiftsimio.visualisation.volume_render	

 	
 	
 swiftsimio.writer	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	a_factor (swiftsimio.objects.cosmo_factor property)

 	
 	apply_color_map() (in module swiftsimio.visualisation.tools.cmaps)

 	astype() (swiftsimio.objects.cosmo_array method)

B

 	
 	byteswap() (swiftsimio.objects.cosmo_array method)

C

 	
 	Cmap2D (class in swiftsimio.visualisation.tools.cmaps)

 	code_info (swiftsimio.reader.SWIFTMetadata property)

 	color_map_grid (swiftsimio.visualisation.tools.cmaps.Cmap2D property)

 	colors (swiftsimio.visualisation.tools.cmaps.Cmap2D attribute)

 	comoving (swiftsimio.objects.cosmo_array attribute)

 	compatible_with_comoving() (swiftsimio.objects.cosmo_array method)

 	compatible_with_physical() (swiftsimio.objects.cosmo_array method)

 	compiler_info (swiftsimio.reader.SWIFTMetadata property)

 	compress() (swiftsimio.objects.cosmo_array method)

 	compression (swiftsimio.objects.cosmo_array attribute)

 	concatenate_ranges() (in module swiftsimio.accelerated)

 	connect_links() (in module swiftsimio.subset_writer)

 	
 	constrain_mask() (swiftsimio.masks.SWIFTMask method)

 	constrain_spatial() (swiftsimio.masks.SWIFTMask method)

 	convert_masks_to_ranges() (swiftsimio.masks.SWIFTMask method)

 	convert_to_comoving() (swiftsimio.objects.cosmo_array method)

 	convert_to_physical() (swiftsimio.objects.cosmo_array method)

 	coordinates (swiftsimio.visualisation.tools.cmaps.Cmap2D attribute)

 	cosmo_array (class in swiftsimio.objects)

 	cosmo_factor (class in swiftsimio.objects)

 	(swiftsimio.objects.cosmo_array attribute)

 	create_particle_datasets() (swiftsimio.reader.SWIFTDataset method)

 	(swiftsimio.writer.SWIFTWriterDataset method)

 	cuda_jit() (in module swiftsimio.optional_packages)

 	current (swiftsimio.reader.SWIFTUnits attribute)

D

 	
 	decode() (in module swiftsimio.swiftsnap)

 	
 	diagonal() (swiftsimio.objects.cosmo_array method)

 	diffusion_info (swiftsimio.reader.SWIFTMetadata property)

E

 	
 	ensure_rgba() (in module swiftsimio.visualisation.tools.cmaps)

 	expand_ranges() (in module swiftsimio.accelerated)

 	
 	extract_cosmology() (swiftsimio.reader.SWIFTMetadata method)

 	extract_ranges_from_chunks() (in module swiftsimio.accelerated)

F

 	
 	filename (swiftsimio.reader.SWIFTMetadata attribute)

 	find_datasets() (in module swiftsimio.subset_writer)

 	find_links() (in module swiftsimio.subset_writer)

 	
 	flatten() (swiftsimio.objects.cosmo_array method)

 	from_astropy() (swiftsimio.objects.cosmo_array class method)

 	from_pint() (swiftsimio.objects.cosmo_array class method)

G

 	
 	generate_color_map_grid() (swiftsimio.visualisation.tools.cmaps.Cmap2D method)

 	(swiftsimio.visualisation.tools.cmaps.ImageCmap2D method)

 	(swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2D method)

 	(swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2DHSV method)

 	generate_dataset() (in module swiftsimio.reader)

 	(in module swiftsimio.writer)

 	generate_deleter() (in module swiftsimio.reader)

 	(in module swiftsimio.writer)

 	generate_getter() (in module swiftsimio.reader)

 	(in module swiftsimio.writer)

 	generate_setter() (in module swiftsimio.reader)

 	(in module swiftsimio.writer)

 	
 	generate_smoothing_lengths() (in module swiftsimio.visualisation.smoothing_length_generation)

 	get_chunk_ranges() (in module swiftsimio.accelerated)

 	get_dataset_mask() (in module swiftsimio.subset_writer)

 	get_dimensions() (in module swiftsimio.writer)

 	get_mapping_metadata() (swiftsimio.reader.SWIFTMetadata method)

 	get_masked_counts_offsets() (swiftsimio.masks.SWIFTMask method)

 	get_metadata() (swiftsimio.reader.SWIFTDataset method)

 	(swiftsimio.reader.SWIFTMetadata method)

 	get_named_column_metadata() (swiftsimio.reader.SWIFTMetadata method)

 	get_swift_name() (in module swiftsimio.subset_writer)

 	get_unit_dictionary() (swiftsimio.reader.SWIFTUnits method)

 	get_units() (swiftsimio.reader.SWIFTDataset method)

H

 	
 	header (swiftsimio.reader.SWIFTMetadata attribute)

 	header_names (swiftsimio.statistics.SWIFTStatisticsFile attribute)

 	
 	header_snake_case_names (swiftsimio.statistics.SWIFTStatisticsFile attribute)

 	header_units (swiftsimio.statistics.SWIFTStatisticsFile attribute)

 	hydro_info (swiftsimio.reader.SWIFTMetadata property)

I

 	
 	ImageCmap2D (class in swiftsimio.visualisation.tools.cmaps)

 	in_units() (swiftsimio.objects.cosmo_array method)

 	
 	index_dataset() (in module swiftsimio.accelerated)

 	InvalidScaleFactor

K

 	
 	kernel() (in module swiftsimio.visualisation.projection_backends.gpu)

 	(in module swiftsimio.visualisation.slice)

 	
 	kernel_double_precision() (in module swiftsimio.visualisation.projection_backends.kernels)

 	kernel_single_precision() (in module swiftsimio.visualisation.projection_backends.kernels)

L

 	
 	length (swiftsimio.reader.SWIFTUnits attribute)

 	library_info (swiftsimio.reader.SWIFTMetadata property)

 	LinearSegmentedCmap2D (class in swiftsimio.visualisation.tools.cmaps)

 	LinearSegmentedCmap2DHSV (class in swiftsimio.visualisation.tools.cmaps)

 	list_of_strings_to_arrays() (in module swiftsimio.accelerated)

 	load() (in module swiftsimio)

 	load_cosmology() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	
 	load_field_compressions() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	load_field_descriptions() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	load_field_names() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	load_field_units() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	load_metadata() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	load_named_columns() (swiftsimio.reader.SWIFTParticleTypeMetadata method)

 	load_particle_types() (swiftsimio.reader.SWIFTMetadata method)

 	load_statistics() (in module swiftsimio)

M

 	
 	MappingTable (class in swiftsimio.reader)

 	mask() (in module swiftsimio)

 	mass (swiftsimio.reader.SWIFTUnits attribute)

 	MassTable (class in swiftsimio.reader)

 	
 module

 	swiftsimio

 	swiftsimio.accelerated

 	swiftsimio.conversions

 	swiftsimio.initial_conditions

 	swiftsimio.initial_conditions.generate_particles

 	swiftsimio.masks

 	swiftsimio.objects

 	swiftsimio.optional_packages

 	swiftsimio.reader

 	swiftsimio.statistics

 	swiftsimio.subset_writer

 	swiftsimio.swiftsnap

 	swiftsimio.units

 	swiftsimio.visualisation

 	swiftsimio.visualisation.projection

 	swiftsimio.visualisation.projection_backends

 	swiftsimio.visualisation.projection_backends.fast

 	swiftsimio.visualisation.projection_backends.gpu

 	swiftsimio.visualisation.projection_backends.histogram

 	swiftsimio.visualisation.projection_backends.kernels

 	swiftsimio.visualisation.projection_backends.reference

 	swiftsimio.visualisation.projection_backends.renormalised

 	swiftsimio.visualisation.projection_backends.subsampled

 	swiftsimio.visualisation.projection_backends.subsampled_extreme

 	swiftsimio.visualisation.rotation

 	swiftsimio.visualisation.slice

 	swiftsimio.visualisation.smoothing_length_generation

 	swiftsimio.visualisation.tools

 	swiftsimio.visualisation.tools.cmaps

 	swiftsimio.visualisation.volume_render

 	swiftsimio.writer

N

 	
 	newbyteorder() (swiftsimio.objects.cosmo_array method)

P

 	
 	plot() (swiftsimio.visualisation.tools.cmaps.Cmap2D method)

 	postprocess_header() (swiftsimio.reader.SWIFTMetadata method)

 	present_particle_names (swiftsimio.reader.SWIFTMetadata property)

 	
 	present_particle_types (swiftsimio.reader.SWIFTMetadata property)

 	project_gas() (in module swiftsimio.visualisation.projection)

 	project_gas_pixel_grid() (in module swiftsimio.visualisation.projection)

 	project_pixel_grid() (in module swiftsimio.visualisation.projection)

R

 	
 	ranges_from_array() (in module swiftsimio.accelerated)

 	ravel() (swiftsimio.objects.cosmo_array method)

 	raw_lines (swiftsimio.statistics.SWIFTStatisticsFile attribute)

 	read_ranges_from_file() (in module swiftsimio.accelerated)

 	read_ranges_from_file_chunked() (in module swiftsimio.accelerated)

 	read_ranges_from_file_unchunked() (in module swiftsimio.accelerated)

 	
 	redshift (swiftsimio.objects.cosmo_factor property)

 	render_gas() (in module swiftsimio.visualisation.volume_render)

 	render_gas_voxel_grid() (in module swiftsimio.visualisation.volume_render)

 	repeat() (swiftsimio.objects.cosmo_array method)

 	reshape() (swiftsimio.objects.cosmo_array method)

 	rotation_matrix_from_vector() (in module swiftsimio.visualisation.rotation)

S

 	
 	scatter() (in module swiftsimio.visualisation.projection_backends.fast)

 	(in module swiftsimio.visualisation.projection_backends.gpu)

 	(in module swiftsimio.visualisation.projection_backends.histogram)

 	(in module swiftsimio.visualisation.projection_backends.reference)

 	(in module swiftsimio.visualisation.projection_backends.renormalised)

 	(in module swiftsimio.visualisation.projection_backends.subsampled)

 	(in module swiftsimio.visualisation.projection_backends.subsampled_extreme)

 	(in module swiftsimio.visualisation.volume_render)

 	scatter_gpu() (in module swiftsimio.visualisation.projection_backends.gpu)

 	scatter_parallel() (in module swiftsimio.visualisation.projection_backends.fast)

 	(in module swiftsimio.visualisation.projection_backends.gpu)

 	(in module swiftsimio.visualisation.projection_backends.histogram)

 	(in module swiftsimio.visualisation.projection_backends.reference)

 	(in module swiftsimio.visualisation.projection_backends.renormalised)

 	(in module swiftsimio.visualisation.projection_backends.subsampled)

 	(in module swiftsimio.visualisation.projection_backends.subsampled_extreme)

 	(in module swiftsimio.visualisation.volume_render)

 	slice_gas() (in module swiftsimio.visualisation.slice)

 	slice_gas_pixel_grid() (in module swiftsimio.visualisation.slice)

 	slice_scatter() (in module swiftsimio.visualisation.slice)

 	slice_scatter_parallel() (in module swiftsimio.visualisation.slice)

 	swapaxes() (swiftsimio.objects.cosmo_array method)

 	swift_cosmology_to_astropy() (in module swiftsimio.conversions)

 	SWIFTDataset (class in swiftsimio.reader)

 	SWIFTMask (class in swiftsimio.masks)

 	SWIFTMetadata (class in swiftsimio.reader)

 	SWIFTParticleTypeMetadata (class in swiftsimio.reader)

 	
 swiftsimio

 	module

 	
 swiftsimio.accelerated

 	module

 	
 swiftsimio.conversions

 	module

 	
 swiftsimio.initial_conditions

 	module

 	
 swiftsimio.initial_conditions.generate_particles

 	module

 	
 swiftsimio.masks

 	module

 	
 swiftsimio.objects

 	module

 	
 swiftsimio.optional_packages

 	module

 	
 swiftsimio.reader

 	module

 	
 swiftsimio.statistics

 	module

 	
 	
 swiftsimio.subset_writer

 	module

 	
 swiftsimio.swiftsnap

 	module

 	
 swiftsimio.units

 	module

 	
 swiftsimio.visualisation

 	module

 	
 swiftsimio.visualisation.projection

 	module

 	
 swiftsimio.visualisation.projection_backends

 	module

 	
 swiftsimio.visualisation.projection_backends.fast

 	module

 	
 swiftsimio.visualisation.projection_backends.gpu

 	module

 	
 swiftsimio.visualisation.projection_backends.histogram

 	module

 	
 swiftsimio.visualisation.projection_backends.kernels

 	module

 	
 swiftsimio.visualisation.projection_backends.reference

 	module

 	
 swiftsimio.visualisation.projection_backends.renormalised

 	module

 	
 swiftsimio.visualisation.projection_backends.subsampled

 	module

 	
 swiftsimio.visualisation.projection_backends.subsampled_extreme

 	module

 	
 swiftsimio.visualisation.rotation

 	module

 	
 swiftsimio.visualisation.slice

 	module

 	
 swiftsimio.visualisation.smoothing_length_generation

 	module

 	
 swiftsimio.visualisation.tools

 	module

 	
 swiftsimio.visualisation.tools.cmaps

 	module

 	
 swiftsimio.visualisation.volume_render

 	module

 	
 swiftsimio.writer

 	module

 	swiftsnap() (in module swiftsimio.swiftsnap)

 	SWIFTStatisticsFile (class in swiftsimio.statistics)

 	SWIFTUnits (class in swiftsimio.reader)

 	SWIFTWriterDataset (class in swiftsimio.writer)

T

 	
 	T (swiftsimio.objects.cosmo_array property)

 	take() (swiftsimio.objects.cosmo_array method)

 	temperature (swiftsimio.reader.SWIFTUnits attribute)

 	time (swiftsimio.reader.SWIFTUnits attribute)

 	
 	to_comoving() (swiftsimio.objects.cosmo_array method)

 	to_physical() (swiftsimio.objects.cosmo_array method)

 	tqdm() (in module swiftsimio.optional_packages)

 	transpose() (swiftsimio.objects.cosmo_array method)

U

 	
 	ua (swiftsimio.objects.cosmo_array property)

 	unit_array (swiftsimio.objects.cosmo_array property)

 	
 	units (swiftsimio.reader.SWIFTMetadata attribute)

 	update_metadata_counts() (in module swiftsimio.subset_writer)

V

 	
 	validate_file() (in module swiftsimio)

 	
 	view() (swiftsimio.objects.cosmo_array method)

 	viscosity_info (swiftsimio.reader.SWIFTMetadata property)

W

 	
 	write() (swiftsimio.writer.SWIFTWriterDataset method)

 	write_datasubset() (in module swiftsimio.subset_writer)

 	
 	write_metadata() (in module swiftsimio.subset_writer)

 	write_subset() (in module swiftsimio.subset_writer)

_images/test_2d_cmap_output_mill.png

_images/temp_slice.png

_images/test_2d_cmap_output.png

_static/minus.png

_static/plus.png

_static/file.png

_images/load_halo_selection.png

_images/millenium_cmap.png

_images/load_halo_bound_selection.png

_images/load_halo_fullbox.png

_images/temp_map.png

nav.xhtml

 Table of Contents

 		
 Welcome to SWIFTsimIO’s documentation!

 		
 Getting Started

 		
 Requirements

 		
 Python packages

 		
 Optional packages

 		
 Installing

 		
 Usage

 		
 Loading Data

 		
 Using metadata

 		
 Reading particle data

 		
 Named columns

 		
 Non-unyt properties

 		
 User-defined particle types

 		
 Masking

 		
 Spatial-only masking

 		
 Example

 		
 Full mask

 		
 Writing subset of snapshot

 		
 Visualisation

 		
 Projection

 		
 Example

 		
 Backends

 		
 Periodic boundaries

 		
 Rotations

 		
 Other particle types

 		
 Lower-level API

 		
 Slices

 		
 Example

 		
 Periodic boundaries

 		
 Rotations

 		
 Lower-level API

 		
 Volume Rendering

 		
 Example

 		
 Periodic boundaries

 		
 Rotations

 		
 Lower-level API

 		
 Tools

 		
 2D Color Maps

 		
 VELOCIraptor Integration

 		
 Example

 		
 Creating Initial Conditions

 		
 Example

 		
 Statistics Files

 		
 Example

 		
 Command-line Utilities

 		
 swiftsnap

 		
 API Documentation

 		
 swiftsimio package

 		
 validate_file()

 		
 mask()

 		
 load()

