
SWIFTsimIO
Release 7.0.0

Josh Borrow

Nov 09, 2023

CONTENTS

1 Getting Started 3
1.1 Requirements . 3
1.2 Installing . 4
1.3 Usage . 4

2 Loading Data 7
2.1 Using metadata . 8
2.2 Reading particle data . 9
2.3 Named columns . 10
2.4 Non-unyt properties . 10
2.5 User-defined particle types . 11

3 Masking 13
3.1 Spatial-only masking . 13
3.2 Full mask . 14
3.3 Writing subset of snapshot . 15

4 Visualisation 17
4.1 Projection . 17
4.2 Slices . 26
4.3 Volume Rendering . 31
4.4 Tools . 34

5 VELOCIraptor Integration 41
5.1 Example . 41

6 Creating Initial Conditions 45
6.1 Example . 45

7 Statistics Files 47
7.1 Example . 47

8 Command-line Utilities 49
8.1 swiftsnap . 49

9 API Documentation 51
9.1 swiftsimio package . 51

10 Indices and tables 111

11 Citing SWIFTsimIO 113

i

12 Indices and tables 115

Python Module Index 117

Index 119

ii

SWIFTsimIO, Release 7.0.0

swiftsimio is a toolkit for reading SWIFT data, an astrophysics simulation code. It is used to ensure that everything
that you read has a symbolic unit attached, and can be used for visualisation. The final key feature that it enables is the
use of the cell metadata in SWIFT snapshots to enable partial reading.

CONTENTS 1

http://www.swiftsim.com

SWIFTsimIO, Release 7.0.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

The SWIFT astrophysical simulation code (http://swift.dur.ac.uk) is used widely. There exists many ways of reading the
data from SWIFT, which outputs HDF5 files. These range from reading directly using h5py to using a complex system
such as yt; however these either are unsatisfactory (e.g. a lack of unit information in reading HDF5), or too complex
for most use-cases. This (thin) wrapper provides an object-oriented API to read (dynamically) data from SWIFT.

Getting set up with swiftsimio is easy; it (by design) has very few requirements. There are a number of optional
packages that you can install to make the experience better and these are recommended. All requirements are detailed
below.

1.1 Requirements

This requires python v3.8.0 or higher. Unfortunately it is not possible to support swiftsimio on versions of python
lower than this. It is important that you upgrade if you are still a python2 user.

1.1.1 Python packages

• numpy, required for the core numerical routines.

• h5py, required to read data from the SWIFT HDF5 output files.

• unyt, required for symbolic unit calculations (depends on sympy).

1.1.2 Optional packages

• numba, highly recommended should you wish to use the in-built visualisation tools.

• scipy, required if you wish to generate smoothing lengths for particle types that do not store this variable in the
snapshots (e.g. dark matter)

• tqdm, required for progress bars for some long-running tasks. If not installed no progress bar will be shown.

3

http://swift.dur.ac.uk

SWIFTsimIO, Release 7.0.0

1.2 Installing

swiftsimio can be installed using the python packaging manager, pip, or any other packaging manager that you wish
to use:

pip install swiftsimio

Note that this will install any required packages for you.

To set up the code for development, first clone the latest master from GitHub:

git clone https://github.com/SWIFTSIM/swiftsimio.git

and install with pip using the -e flag,

cd swiftsimio

pip install -e .

1.3 Usage

There are many examples of using swiftsimio available in the swiftsimio_examples repository, which also includes
examples for reading older (e.g. EAGLE) datasets.

Example usage is shown below, which plots a density-temperature phase diagram, with density and temperature given
in CGS units:

import swiftsimio as sw

This loads all metadata but explicitly does _not_ read any particle data yet
data = sw.load("/path/to/swift/output")

import matplotlib.pyplot as plt

data.gas.densities.convert_to_cgs()
data.gas.temperatures.convert_to_cgs()

plt.loglog()

plt.scatter(
data.gas.densities,
data.gas.temperatures,
s=1

)

plt.xlabel(fr"Gas density $\left[{data.gas.densities.units.latex_repr}\right]$")
plt.ylabel(fr"Gas temperature $\left[{data.gas.temperatures.units.latex_repr}\right]$")

plt.tight_layout()

plt.savefig("test_plot.png", dpi=300)

Don’t worry too much about this for now if you can’t understand it, we will get into this much more heavily in the next
section.

In the above it’s important to note the following:

4 Chapter 1. Getting Started

https://github.com/swiftsim/swiftsimio-examples

SWIFTsimIO, Release 7.0.0

• All metadata is read in when the swiftsimio.load() function is called.

• Only the density and temperatures (corresponding to the PartType0/Densities and PartType0/
Temperatures) datasets are read in.

• That data is only read in once the swiftsimio.objects.cosmo_array.convert_to_cgs()method is called.

• swiftsimio.objects.cosmo_array.convert_to_cgs() converts data in-place; i.e. it returns None.

• The data is cached and not re-read in when plt.scatter is called.

1.3. Usage 5

SWIFTsimIO, Release 7.0.0

6 Chapter 1. Getting Started

CHAPTER

TWO

LOADING DATA

The main purpose of swiftsimio is to load data. This section will tell you all about four main objects:

• swiftsimio.reader.SWIFTUnits, responsible for creating a correspondence between the SWIFT units and
unyt objects.

• swiftsimio.reader.SWIFTMetadata, responsible for loading any required information from the SWIFT
headers into python-readable data.

• swiftsimio.reader.SWIFTDataset, responsible for holding all particle data, and keeping track of the above
two objects.

• swiftsimio.reader.SWIFTParticleTypeMetadata, responsible for cataloguing metadata just about indi-
vidual particle types, like gas, including what particle fields are present.

To get started, first locate any SWIFT data that you wish to analyse. If you don’t have any handy, you can always
download our test cosmological volume at:

http://virgodb.cosma.dur.ac.uk/swift-webstorage/IOExamples/cosmo_volume_example.hdf5

with associated halo catalogue at

http://virgodb.cosma.dur.ac.uk/swift-webstorage/IOExamples/cosmo_volume_example.
properties

which is needed should you wish to use the velociraptor integration library in the visualisation examples.

To create your first instance of swiftsimio.reader.SWIFTDataset, you can use the helper function swiftsimio.
load as follows:

from swiftsimio import load

Of course, replace this path with your own snapshot should you be using
custom data.
data = load("cosmo_volume_example.hdf5")

The type of data is now swiftsimio.reader.SWIFTDataset. Have a quick look around this dataset in an iPython
shell, or a jupyter notebook, and you will see that it contains several sub-objects:

• data.gas, which contains all information about gas particles in the simulation.

• data.dark_matter, likewise containing information about the dark matter particles in the simulation.

• data.metadata, an instance of swiftsimio.reader.SWIFTMetadata

• data.units, an instance of swiftsimio.reader.SWIFTUnits

7

SWIFTsimIO, Release 7.0.0

2.1 Using metadata

Let’s begin by reading some useful metadata straight out of our data.metadata object. For instance, we may want to
know the box-size of our simulation:

meta = data.metadata
boxsize = meta.boxsize

print(boxsize)

This will output [142.24751067 142.24751067 142.24751067] Mpc - note the units that are attached. These
units being attached to everything is one of the key advantages of using swiftsimio. It is really easy to convert
between units; for instance if we want that box-size in kiloparsecs,

boxsize.convert_to_units("kpc")

print(boxsize)

Now outputting [142247.5106242 142247.5106242 142247.5106242] kpc. Neat! This is all thanks to our tight
integration with unyt. If you have more complex units, it is often useful to specify them in terms of unyt objects as
follows:

import unyt

new_units = unyt.cm * unyt.Mpc / unyt.kpc
new_units.simplify()

boxsize.convert_to_units(new_units)

In general, we suggest using unyt unit objects rather than strings. You can find more information about unyt on the
unyt documentation website.

There is lots of metadata available through this object; the best way to see this is by exploring the object using dir()
in an interactive shell, but as a summary:

• All metadata from the snapshot is available through many variables, for example the meta.hydro_scheme prop-
erty.

• The numbers of particles of different types are available through meta.n_{gas,dark_matter,stars,
black_holes}.

• Several pre-LaTeXed strings are available describing the configuration state of the code, such as meta.
hydro_info, meta.compiler_info.

• Several snapshot-wide parameters, such as meta.a (current scale factor), meta.t (current time), meta.z (cur-
rent redshift), meta.run_name (the name of this run, specified in the SWIFT parameter file), and meta.
snapshot_date (a datetime object describing when the snapshot was written to disk).

• If you have astropy installed, you can also use the metadata.cosmology object, which is an astropy.
cosmology.w0waCDM instance.

8 Chapter 2. Loading Data

https://unyt.readthedocs.io/en/stable/

SWIFTsimIO, Release 7.0.0

2.2 Reading particle data

To find out what particle properties are present in our snapshot, we can use the instance of swiftsimio.
reader.SWIFTMetadata, data.metadata, which contains several instances of swiftsimio.reader.
SWIFTParticleTypeMetadata describing what kinds of fields are present in gas or dark matter:

Note that gas_properties is an instance of SWIFTParticleTypeMetadata
print(data.metadata.gas_properties.field_names)

This will print a large list, like

['coordinates',
'densities',
...
'temperatures',
'velocities']

These individual attributes can be accessed through the object-oriented interface, for instance,

x_gas = data.gas.coordinates
rho_gas = data.gas.densities
x_dm = data.dark_matter.coordinates

Only at this point is any information actually read from the snapshot, so far we have only read three arrays into
memory - in this case corresponding to /PartType0/Coordinates, /PartType1/Coordinates, and /PartType0/
Densities.

This allows you to be quite lazy when writing scripts; you do not have to write, for instance, a block at the start of the file
with a with h5py.File(...) as handle: and read all of the data at once, you can simply access data whenever
you need it through this predictable interface.

Just like the boxsize, these carry symbolic unyt units,

print(x_gas.units)

will output Mpc. We can again convert these to whatever units we like. For instance, should we wish to convert our gas
densities to solar masses per cubic megaparsec,

new_density_units = unyt.Solar_Mass / unyt.Mpc**3

rho_gas.convert_to_units(new_density_units)

print(rho_gas.units.latex_repr)

which will output '\\frac{M_\\odot}{\\rm{Mpc}^{3}}'. This is a LaTeX representation of those symbolic units
that we just converted our data to - this is very useful for making plots as it can ensure that your data and axes labels
always have consistent units.

2.2. Reading particle data 9

SWIFTsimIO, Release 7.0.0

2.3 Named columns

SWIFT can output custom metadata in SubgridScheme/NamedColumns for multi dimensional tables containing
columns that carry individual data. One common example of this is the element mass fractions of gas and stellar
particles. These are then placed in an object hierarchy, as follows:

print(data.gas.element_mass_fractions)

This will output: Named columns instance with [‘hydrogen’, ‘helium’, ‘carbon’, ‘nitrogen’, ‘oxygen’, ‘neon’, ‘magne-
sium’, ‘silicon’, ‘iron’] available for “Fractions of the particles’ masses that are in the given element”

Then, to access individual columns (in this case element abundances):

Access the silicon abundance
data.gas.element_mass_fractions.silicon

2.4 Non-unyt properties

Each data array has some custom properties that are not present within the base unyt.unyt_array class. We create our
own version of this in swiftsimio.objects.cosmo_array, which allows each dataset to contain its own cosmology
and name properties.

For instance, should you ever need to know what a dataset represents, you can ask for a description:

print(rho_gas.name)

which will output Co-moving mass densities of the particles. They include scale-factor information, too,
through the cosmo_factor object,

Conversion factor to make the densities a physical quantity
print(rho_gas.cosmo_factor.a_factor)
physical_rho_gas = rho_gas.cosmo_factor.a_factor * rho_gas

Symbolic scale-factor expression
print(rho_gas.cosmo_factor.expr)

which will output 132651.002785671 and a**(-3.0). This is an easy way to convert your co-moving values to
physical ones.

An even easier way to convert your properties to physical is to use the built-in to_physical and
convert_to_physical methods, as follows:

physical_rho_gas = rho_gas.to_physical()

Convert in-place
rho_gas.convert_to_physical()

10 Chapter 2. Loading Data

SWIFTsimIO, Release 7.0.0

2.5 User-defined particle types

It is now possible to add user-defined particle types that are not already present in the swiftsimio metadata. All you
need to do is specify the three names (see below) and then the particle datasets that you have provided in SWIFT will
be automatically read.

import swiftsimio as sw
import swiftsimio.metadata.particle as swp
from swiftsimio.objects import cosmo_factor, a

swp.particle_name_underscores[6] = "extratype"
swp.particle_name_class[6] = "Extratype"
swp.particle_name_text[6] = "Extratype"

data = sw.load(
"extra_test.hdf5",

)

2.5. User-defined particle types 11

SWIFTsimIO, Release 7.0.0

12 Chapter 2. Loading Data

CHAPTER

THREE

MASKING

swiftsimio provides unique functionality (when compared to other software packages that read HDF5 data) through
its masking facility.

SWIFT snapshots contain cell metadata that allow us to spatially mask the data ahead of time. swiftsimio provides
a number of objects that help with this. This functionality is provided through the swiftsimio.masks sub-module
but is available easily through the swiftsimio.mask() top-level function.

This functionality is used heavily in our VELOCIraptor integration library for only reading data that is near bound
objects.

There are two types of mask, with the default only allowing spatial masking. Full masks require significantly more
memory overhead and are generally much slower than the spatial only mask.

3.1 Spatial-only masking

Spatial only masking is approximate and allows you to only load particles within a given region. It is precise to the
top-level cells that are defined within SWIFT. It will always load all of the particles that you request, but for simplicity
it may also load some particles that are slightly outside of the region of interest. This is because it works as follows:

1. Load the top-level cell metadata.

2. Find the overlap between the specified region and these cells.

3. Load all cells within that overlap.

As you can see, the edges of regions may load in extra information as we always load the whole top-level cell.

3.1.1 Example

In this example we will use the swiftsimio.masks.SWIFTMask object to load the bottom left ‘half’ corner of the
box.

import swiftsimio as sw

filename = "cosmo_volume_example.hdf5"

mask = sw.mask(filename)
The full metadata object is available from within the mask
boxsize = mask.metadata.boxsize
load_region is a 3x2 list [[left, right], [bottom, top], [front, back]]
load_region = [[0.0 * b, 0.5 * b] for b in boxsize]

(continues on next page)

13

https://github.com/swiftsim/velociraptor-python

SWIFTsimIO, Release 7.0.0

(continued from previous page)

Constrain the mask
mask.constrain_spatial(load_region)

Now load the snapshot with this mask
data = sw.load(filename, mask=mask)

data is now a regular swiftsimio.reader.SWIFTDataset object, but it only ever loads particles that are (approxi-
mately) inside the load_region region.

Importantly, this method has a tiny memory overhead, and should also have a relatively small overhead when reading
the data. This allows you to use snapshots that are much larger than the available memory on your machine and process
them with ease.

It is also possible to build up a region with a more complicated geometry by making repeated calls to
constrain_spatial() and setting the optional argument intersect=True. By default any existing selection of cells
would be overwritten; this option adds any additional cells that need to be selected for the new region to the existing
selection instead. For instance, to add the diagonally opposed octant to the selection made above (and so obtain a region
shaped like two cubes with a single corner touching):

additional_region = [[0.5 * b, 1.0 * b] for b in boxsize]
mask.constrain_spatial(additional_region, intersect=True)

In the first call to constrain_spatial() the intersect argument can be set to True or left False (the default): since
no mask yet exists both give the same result.

3.2 Full mask

The below example shows the use of a full masking object, used to constrain densities of particles and only load particles
within that density window.

import swiftsimio as sw

This creates and sets up the masking object.
mask = sw.mask("cosmological_volume.hdf5", spatial_only=False)

This ahead-of-time creates a spatial mask based on the cell metadata.
mask.constrain_spatial([

[0.2 * mask.metadata.boxsize[0], 0.7 * mask.metadata.boxsize[0]],
None,
None]

)

Now, just for fun, we also constrain the density between
0.4 g/cm^3 and 0.8. This reads in the relevant data in the region,
and tests it element-by-element. Note that using masks of this type
is significantly slower than using the spatial-only masking.
density_units = mask.units.mass / mask.units.length**3
mask.constrain_mask("gas", "density", 0.4 * density_units, 0.8 * density_units)

Now we can grab the actual data object. This includes the mask as a parameter.
data = sw.load("cosmo_volume_example.hdf5", mask=mask)

14 Chapter 3. Masking

SWIFTsimIO, Release 7.0.0

When the attributes of this data object are accessed, only the ones that belong to the masked region (in both density
and spatial) are read. I.e. if I ask for the temperature of particles, it will recieve an array containing temperatures of
particles that lie in the region [0.2, 0.7] and have a density between 0.4 and 0.8 g/cm^3.

3.3 Writing subset of snapshot

In some cases it may be useful to write a subset of an existing snapshot to its own hdf5 file. This could be used, for
example, to extract a galaxy halo that is of interest from a snapshot so that the file is easier to work with and transport.

To do this the write_subset function is provided. It can be used, for example, as follows

import swiftsimio as sw
import unyt

mask = sw.mask("eagle_snapshot.hdf5")
mask.constrain_spatial([

[unyt.unyt_quantity(100, unyt.kpc), unyt.unyt_quantity(1000, unyt.kpc)],
None,
None])

sw.subset_writer.write_subset("test_subset.hdf5", mask)

This will write a snapshot which contains the particles from the specified snapshot whose x-coordinate is within the
range [100, 1000] kpc. This function uses the cell mask which encompases the specified spatial domain to successively
read portions of datasets from the input file and writes them to a new snapshot.

Due to the coarse grained nature of the cell mask, particles from outside this range may also be included if they are
within the same top level cells as particles that fall within the given range.

Please note that it is important to run constrain_spatial as this generates and stores the cell mask needed to write
the snapshot subset.

3.3. Writing subset of snapshot 15

SWIFTsimIO, Release 7.0.0

16 Chapter 3. Masking

CHAPTER

FOUR

VISUALISATION

swiftsimio provides visualisation routines accelerated with the numba module. They work without this module,
but we strongly recommend installing it for the best performance (1000x+ speedups). These are provided in the
swiftismio.visualisation sub-modules.

The three built-in rendering types (described below) have the following common interface:

{render_func_name}_gas(
data=data, # SWIFTsimIO dataset
resolution=1024, # Resolution along one axis of the output image
project="masses", # Variable to project, e.g. masses, temperatures, etc.
parallel=False, # Construct the image in (thread) parallel?
region=None, # None, or a list telling which region to render_func_name
periodic=True, # Whether or not to apply periodic boundary conditions

)

The output of these functions comes with associated units and has the correct dimensions. There are lower-level APIs
(also documented here) that provide additional functionality.

4.1 Projection

The swiftsimio.visualisation.projection sub-module provides an interface to render SWIFT data projected
to a grid. This takes your 3D data and projects it down to 2D, such that if you request masses to be smoothed then these
functions return a surface density.

This effectively solves the equation:

𝐴𝑖 =
∑︀

𝑗 𝐴𝑗𝑊𝑖𝑗,2𝐷

with 𝐴𝑖 the smoothed quantity in pixel 𝑖, and 𝑗 all particles in the simulation, with 𝑊 the 2D kernel. Here we use the
Wendland-C2 kernel.

The primary function here is swiftsimio.visualisation.projection.project_gas(), which allows you to
create a gas projection of any field. See the example below.

17

SWIFTsimIO, Release 7.0.0

4.1.1 Example

from swiftsimio import load
from swiftsimio.visualisation.projection import project_gas

data = load("cosmo_volume_example.hdf5")

This creates a grid that has units msun / Mpc^2, and can be transformed like
any other unyt quantity
mass_map = project_gas(

data,
resolution=1024,
project="masses",
parallel=True,
periodic=True,

)

Let's say we wish to save it as msun / kpc^2,
from unyt import msun, kpc
mass_map.convert_to_units(msun / kpc**2)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("gas_surface_dens_map.png", LogNorm()(mass_map.value), cmap="viridis")

This basic demonstration creates a mass surface density map.

To create, for example, a projected temperature map, we need to remove the surface density dependence (i.e.
project_gas() returns a surface temperature in units of K / kpc^2 and we just want K) by dividing out by this:

from swiftsimio import load
from swiftsimio.visualisation.projection import project_gas

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Map in msun / mpc^2
mass_map = project_gas(

data,
resolution=1024,
project="masses",
parallel=True,
periodic=True,

)
Map in msun * K / mpc^2
mass_weighted_temp_map = project_gas(

data,
resolution=1024,
project="mass_weighted_temps",
parallel=True,

(continues on next page)

18 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

(continued from previous page)

periodic=True,
)

temp_map = mass_weighted_temp_map / mass_map

from unyt import K
temp_map.convert_to_units(K)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("temp_map.png", LogNorm()(temp_map.value), cmap="twilight")

The output from this example, when used with the example data provided in the loading data section should look
something like:

4.1. Projection 19

SWIFTsimIO, Release 7.0.0

4.1.2 Backends

In certain cases, rather than just using this facility for visualisation, you will wish that the values that are returned to be
as well converged as possible. For this, we provide several different backends. These are passed as backend="str"
to all of the projection visualisation functions, and are available in the module swiftsimio.visualisation.
projection.projection_backends. The available backends are as follows:

• fast: The default backend - this is extremely fast, and provides very basic smoothing, with a return type of
single precision floating point numbers.

• histogram: This backend provides zero smoothing, and acts in a similar way to the np.hist2d function but
with the same arguments as scatter.

• reference: The same backend as fast but with two distinguishing features; all calculations are performed in

20 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

double precision, and it will return early with a warning message if there are not enough pixels to fully resolve
each kernel. Regular users should not use this mode.

• renormalised: The same as fast, but each kernel is evaluated twice and renormalised to ensure mass conser-
vation within floating point precision. Returns single precision arrays.

• subsampled: This is the recommended mode for users who wish to have converged results even at low resolution.
Each kernel is evaluated at least 32 times, with overlaps between pixels considered for every single particle.
Returns in double precision.

• subsampled_extreme: The same as subsampled, but provides 64 kernel evaluations.

• gpu: The same as fast but uses CUDA for faster computation on supported GPUs. The parallel implementation
is the same function as the non-parallel.

Example:

from swiftsimio import load
from swiftsimio.visualisation.projection import project_gas

data = load("cosmo_volume_example.hdf5")

subsampled_array = project_gas(
data,
resolution=1024,
project="entropies",
parallel=True,
backend="subsampled",
periodic=True,

)

This will likely look very similar to the image that you make with the default backend="fast", but will have a well-
converged distribution at any resolution level.

4.1.3 Periodic boundaries

Cosmological simulations and many other simulations use periodic boundary conditions. This has implications for
the particles at the edge of the simulation box: they can contribute to pixels on multiple sides of the image. If this
effect is not taken into account, then the pixels close to the edge will have values that are too low because of missing
contributions.

All visualisation functions by default assume a periodic box. Rather than simply projecting each individual particle
once, four additional periodic copies of each particle are also projected. Most copies will project outside the valid pixel
range, but the copies that do not ensure that pixels close to the edge receive all necessary contributions. Thanks to
Numba optimisations, the overhead of these additional copies is relatively small.

There are some caveats with this approach. If you try to visualise a subset of the particles in the box (e.g. using a
mask), then only periodic copies of particles in this subset will be used. If the subset does not include particles on
the other side of the periodic boundary, then these will still be missing from the projection. The same is true if you
visualise a region of the box. The periodic boundary wrapping is also not compatible with rotations (see below) and
should therefore not be used together with a rotation.

4.1. Projection 21

SWIFTsimIO, Release 7.0.0

4.1.4 Rotations

Sometimes you will need to visualise a galaxy from a different perspective. The swiftsimio.visualisation.
rotation sub-module provides routines to generate rotation matrices corresponding to vectors, which can then be
provided to the rotation_matrix argument of project_gas() (and project_gas_pixel_grid()). You will
also need to supply the rotation_center argument, as the rotation takes place around this given point. The example
code below loads a snapshot, and a halo catalogue, and creates an edge-on and face-on projection using the integration
in velociraptor. More information on possible integrations with this library is shown in the velociraptor section.

from swiftsimio import load, mask
from velociraptor import load as load_catalogue
from swiftsimio.visualisation.rotation import rotation_matrix_from_vector
from swiftsimio.visualisation.projection import project_gas_pixel_grid

import unyt
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm

Radius around which to load data, we will visualise half of this
size = 1000 * unyt.kpc

snapshot_filename = "cosmo_volume_example.hdf5"
catalogue_filename = "cosmo_volume_example.properties"

catalogue = load_catalogue(catalogue_filename)

Which halo should we visualise?
halo = 0

x = catalogue.positions.xcmbp[halo]
y = catalogue.positions.ycmbp[halo]
z = catalogue.positions.zcmbp[halo]

lx = catalogue.angular_momentum.lx[halo]
ly = catalogue.angular_momentum.ly[halo]
lz = catalogue.angular_momentum.lz[halo]

The angular momentum vector will point perpendicular to the galaxy disk.
If your simulation contains stars, use lx_star
angular_momentum_vector = np.array([lx.value, ly.value, lz.value])
angular_momentum_vector /= np.linalg.norm(angular_momentum_vector)

face_on_rotation_matrix = rotation_matrix_from_vector(
angular_momentum_vector

)
edge_on_rotation_matrix = rotation_matrix_from_vector(

angular_momentum_vector,
axis="y"

)

region = [
[x - size, x + size],

(continues on next page)

22 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

(continued from previous page)

[y - size, y + size],
[z - size, z + size],

]

visualise_region = [
x - 0.5 * size, x + 0.5 * size,
y - 0.5 * size, y + 0.5 * size,

]

data_mask = mask(snapshot_filename)
data_mask.constrain_spatial(region)
data = load(snapshot_filename, mask=data_mask)

Use project_gas_pixel_grid to generate projected images

common_arguments = dict(
data=data,
resolution=512,
parallel=True,
region=visualise_region,
periodic=False, # disable periodic boundaries when using rotations

)

un_rotated = project_gas_pixel_grid(**common_arguments)

face_on = project_gas_pixel_grid(
**common_arguments,
rotation_center=unyt.unyt_array([x, y, z]),
rotation_matrix=face_on_rotation_matrix,

)

edge_on = project_gas_pixel_grid(
**common_arguments,
rotation_center=unyt.unyt_array([x, y, z]),
rotation_matrix=edge_on_rotation_matrix,

)

Using this with the provided example data will just show blobs due to its low resolution nature. Using one of the
EAGLE volumes (examples/EAGLE_ICs) will produce much nicer galaxies, but that data is too large to provide as an
example in this tutorial.

You can also provide an extra two values, the z min and max, as part of the region parameter. This may have some
slight performance impact, so it is generally advised that you do this on sub-loaded volumes only.

4.1. Projection 23

SWIFTsimIO, Release 7.0.0

4.1.5 Other particle types

Other particle types are able to be visualised through the use of the swiftsimio.visualisation.projection.
project_pixel_grid() function. This does not attach correct symbolic units, so you will have to work those out
yourself, but it does perform the smoothing. We aim to introduce the feature of correctly applied units to these projec-
tions soon.

To use this feature for particle types that do not have smoothing lengths, you will need to generate them, as in the example
below where we create a mass density map for dark matter. We provide a utility to do this through swiftsimio.
visualisation.smoothing_length_generation.generate_smoothing_lengths().

from swiftsimio import load
from swiftsimio.visualisation.projection import project_pixel_grid
from swiftsimio.visualisation.smoothing_length_generation import generate_smoothing_
→˓lengths

data = load("cosmo_volume_example.hdf5")

Generate smoothing lengths for the dark matter
data.dark_matter.smoothing_length = generate_smoothing_lengths(

data.dark_matter.coordinates,
data.metadata.boxsize,
kernel_gamma=1.8,
neighbours=57,
speedup_fac=2,
dimension=3,

)

Project the dark matter mass
dm_mass = project_pixel_grid(

Note here that we pass in the dark matter dataset not the whole
data object, to specify what particle type we wish to visualise
data=data.dark_matter,
boxsize=data.metadata.boxsize,
resolution=1024,
project="masses",
parallel=True,
region=None,
periodic=True,

)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Everyone knows that dark matter is purple
imsave("dm_mass_map.png", LogNorm()(dm_mass), cmap="inferno")

The output from this example, when used with the example data provided in the loading data section should look
something like:

24 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

4.1.6 Lower-level API

The lower-level API for projections allows for any general positions, smoothing lengths, and smoothed quantities, to
generate a pixel grid that represents the smoothed version of the data.

This API is available through swiftsimio.visualisation.projection.scatter() and swiftsimio.
visualisation.projection.scatter_parallel() for the parallel version. The parallel version uses significantly
more memory as it allocates a thread-local image array for each thread, summing them in the end. Here we will only
describe the scatter variant, but they behave in the exact same way.

By default this uses the “fast” backend. To use the others, you can select them manually from the module, or by using
the backends and backends_parallel dictionaries in swiftsimio.visualisation.projection.

To use this function, you will need:

4.1. Projection 25

SWIFTsimIO, Release 7.0.0

• x-positions of all of your particles, x.

• y-positions of all of your particles, y.

• A quantity which you wish to smooth for all particles, such as their mass, m.

• Smoothing lengths for all particles, h.

• The resolution you wish to make your square image at, res.

Optionally, you will also need: + the size of the simulation box in x and y, box_x and box_y.

The key here is that only particles in the domain [0, 1] in x, and [0, 1] in y will be visible in the image. You may have
particles outside of this range; they will not crash the code, and may even contribute to the image if their smoothing
lengths overlap with [0, 1]. You will need to re-scale your data such that it lives within this range. Then you may use
the function as follows:

from swiftsimio.visualisation.projection import scatter

Using the variable names from above
out = scatter(x=x, y=y, h=h, m=m, res=res)

out will be a 2D numpy grid of shape [res, res]. You will need to re-scale this back to your original dimensions to
get it in the correct units, and do not forget that it now represents the smoothed quantity per surface area.

If the optional arguments box_x and box_y are provided, they should contain the simulation box size in the same
re-scaled coordinates as x and y. The projection backend will then correctly apply periodic boundary wrapping. If
box_x and box_y are not provided or set to 0, no periodic boundaries are applied.

4.2 Slices

The swiftsimio.visualisation.slice sub-module provides an interface to render SWIFT data onto a slice. This
takes your 3D data and finds the 3D density at fixed z-position, slicing through the box.

This effectively solves the equation:

𝐴𝑖 =
∑︀

𝑗 𝐴𝑗𝑊𝑖𝑗,3𝐷

with 𝐴𝑖 the smoothed quantity in pixel 𝑖, and 𝑗 all particles in the simulation, with 𝑊 the 3D kernel. Here we use the
Wendland-C2 kernel. Note that here we take the kernel at a fixed z-position.

The primary function here is swiftsimio.visualisation.slice.slice_gas(), which allows you to create a gas
slice of any field. See the example below.

4.2.1 Example

from swiftsimio import load
from swiftsimio.visualisation.slice import slice_gas

data = load("cosmo_volume_example.hdf5")

This creates a grid that has units msun / Mpc^3, and can be transformed like
any other unyt quantity. The position of the slice along the z axis is
provided in the z_slice argument.
mass_map = slice_gas(

data,
(continues on next page)

26 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

(continued from previous page)

z_slice=0.5 * data.metadata.boxsize[2],
resolution=1024,
project="masses",
parallel=True,
periodic=True,

)

Let's say we wish to save it as g / cm^2,
from unyt import g, cm
mass_map.convert_to_units(g / cm**3)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("gas_slice_map.png", LogNorm()(mass_map.value), cmap="viridis")

This basic demonstration creates a mass density map.

To create, for example, a projected temperature map, we need to remove the density dependence (i.e. slice_gas()
returns a volumetric temperature in units of K / kpc^3 and we just want K) by dividing out by this:

from swiftsimio import load
from swiftsimio.visualisation.slice import slice_gas

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Map in msun / mpc^3
mass_map = slice_gas(

data,
z_slice=0.5 * data.metadata.boxsize[2],
resolution=1024,
project="masses",
parallel=True,
periodic=True,

)

Map in msun * K / mpc^3
mass_weighted_temp_map = slice_gas(

data,
z_slice=0.5 * data.metadata.boxsize[2],
resolution=1024,
project="mass_weighted_temps",
parallel=True,
periodic=True,

)

temp_map = mass_weighted_temp_map / mass_map

from unyt import K
(continues on next page)

4.2. Slices 27

SWIFTsimIO, Release 7.0.0

(continued from previous page)

temp_map.convert_to_units(K)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("temp_map.png", LogNorm()(temp_map.value), cmap="twilight")

The output from this example, when used with the example data provided in the loading data section should look
something like:

28 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

4.2.2 Periodic boundaries

Cosmological simulations and many other simulations use periodic boundary conditions. This has implications for
the particles at the edge of the simulation box: they can contribute to pixels on multiple sides of the image. If this
effect is not taken into account, then the pixels close to the edge will have values that are too low because of missing
contributions.

All visualisation functions by default assume a periodic box. Rather than simply summing each individual particle
once, eight additional periodic copies of each particle are also accounted for. Most copies will contribute outside the
valid pixel range, but the copies that do not ensure that pixels close to the edge receive all necessary contributions.
Thanks to Numba optimisations, the overhead of these additional copies is relatively small.

There are some caveats with this approach. If you try to visualise a subset of the particles in the box (e.g. using a mask),
then only periodic copies of particles in this subset will be used. If the subset does not include particles on the other
side of the periodic boundary, then these will still be missing from the slice. The same is true if you visualise a region
of the box. The periodic boundary wrapping is also not compatible with rotations (see below) and should therefore not
be used together with a rotation.

4.2.3 Rotations

Rotations of the box prior to slicing are provided in a similar fashion to the swiftsimio.visualisation.
projection sub-module, by using the swiftsimio.visualisation.rotation sub-module. To rotate the per-
spective prior to slicing a rotation_center argument in slice_gas() needs to be provided, specifying the point
around which the rotation takes place. The angle of rotation is specified with a matrix, supplied by rotation_matrix
in slice_gas(). The rotation matrix may be computed with rotation_matrix_from_vector(). This will result
in the perspective being rotated to be along the provided vector. This approach to rotations applied to the above example
is shown below.

from swiftsimio import load
from swiftsimio.visualisation.slice import slice_gas
from swiftsimio.visualisation.rotation import rotation_matrix_from_vector

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Specify the rotation parameters
center = 0.5 * data.metadata.boxsize
rotate_vec = [0.5,0.5,1]
matrix = rotation_matrix_from_vector(rotate_vec, axis='z')

Map in msun / mpc^3
If a rotation center is provided, z_slice is taken relative to this
center, resulting in a slice perpendicular to the rotated z axis
mass_map = slice_gas(

data,
z_slice=0. * data.metadata.boxsize[2],
resolution=1024,
project="masses",
rotation_matrix=matrix,
rotation_center=center,
parallel=True,

(continues on next page)

4.2. Slices 29

SWIFTsimIO, Release 7.0.0

(continued from previous page)

periodic=False, # disable periodic boundaries when using rotations
)

Map in msun * K / mpc^3
mass_weighted_temp_map = slice_gas(

data,
z_slice=0. * data.metadata.boxsize[2],
resolution=1024,
project="mass_weighted_temps",
rotation_matrix=matrix,
rotation_center=center,
parallel=True,
periodic=False,

)

temp_map = mass_weighted_temp_map / mass_map

from unyt import K
temp_map.convert_to_units(K)

from matplotlib.pyplot import imsave
from matplotlib.colors import LogNorm

Normalize and save
imsave("temp_map.png", LogNorm()(temp_map.value), cmap="twilight")

4.2.4 Lower-level API

The lower-level API for slices allows for any general positions, smoothing lengths, and smoothed quantities, to generate
a pixel grid that represents the smoothed, sliced, version of the data.

This API is available through swiftsimio.visualisation.slice.slice_scatter() and swiftsimio.
visualisation.slice.slice_scatter_parallel() for the parallel version. The parallel version uses signifi-
cantly more memory as it allocates a thread-local image array for each thread, summing them in the end. Here we will
only describe the scatter variant, but they behave in the exact same way.

To use this function, you will need:

• x-positions of all of your particles, x.

• y-positions of all of your particles, y.

• z-positions of all of your particles, z.

• Where in the range you wish to slice, z_slice.

• A quantity which you wish to smooth for all particles, such as their mass, m.

• Smoothing lengths for all particles, h.

• The resolution you wish to make your square image at, res.

Optionally, you will also need: + the size of the simulation box in x, y and z, box_x, box_y and box_z.

The key here is that only particles in the domain [0, 1] in x and y will be visible in the image. You may have particles
outside of this range; they will not crash the code, and may even contribute to the image if their smoothing lengths
overlap with [0, 1]. You will need to re-scale your data such that it lives within this range. Smoothing lengths and z

30 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

coordinates need to be re-scaled in the same way (using the same scaling factor), but z coordinates do not need to lie
in the domain [0, 1]. Then you may use the function as follows:

from swiftsimio.visualisation.slice import slice_scatter

Using the variable names from above
out = slice_scatter(x=x, y=y, z=z, h=h, m=m, z_slice=z_slice, res=res)

out will be a 2D numpy grid of shape [res, res]. You will need to re-scale this back to your original dimensions to
get it in the correct units, and do not forget that it now represents the smoothed quantity per volume.

If the optional arguments box_x, box_y and box_z are provided, they should contain the simulation box size in the
same re-scaled coordinates as x, y and z. The slicing function will then correctly apply periodic boundary wrapping.
If box_x, box_y and box_z are not provided or set to 0, no periodic boundaries are applied.

4.3 Volume Rendering

The swiftsimio.visualisation.volume_render sub-module provides an interface to render SWIFT data onto
a fixed grid. This takes your 3D data and finds the 3D density at fixed positions, allowing it to be used in codes that
require fixed grids such as radiative transfer programs.

This effectively solves the equation:

𝐴𝑖 =
∑︀

𝑗 𝐴𝑗𝑊𝑖𝑗,3𝐷

with 𝐴𝑖 the smoothed quantity in pixel 𝑖, and 𝑗 all particles in the simulation, with 𝑊 the 3D kernel. Here we use the
Wendland-C2 kernel.

The primary function here is swiftsimio.visualisation.volume_render.render_gas(), which allows you to
create a gas density grid of any field, see the example below.

4.3.1 Example

from swiftsimio import load
from swiftsimio.visualisation.volume_render import render_gas

data = load("cosmo_volume_example.hdf5")

This creates a grid that has units msun / Mpc^3, and can be transformed like
any other unyt quantity.
mass_grid = render_gas(

data,
resolution=256,
project="masses",
parallel=True,
periodic=True,

)

This basic demonstration creates a mass density cube.

To create, for example, a projected temperature cube, we need to remove the density dependence (i.e. render_gas()
returns a volumetric temperature in units of K / kpc^3 and we just want K) by dividing out by this:

4.3. Volume Rendering 31

SWIFTsimIO, Release 7.0.0

from swiftsimio import load
from swiftsimio.visualisation.volume_render import render_gas

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Map in msun / mpc^3
mass_cube = render_gas(

data,
resolution=256,
project="masses",
parallel=True,
periodic=True,

)

Map in msun * K / mpc^3
mass_weighted_temp_cube = render_gas(

data,
resolution=256,
project="mass_weighted_temps",
parallel=True,
periodic=True,

)

A 256 x 256 x 256 cube with dimensions of temperature
temp_cube = mass_weighted_temp_cube / mass_cube

4.3.2 Periodic boundaries

Cosmological simulations and many other simulations use periodic boundary conditions. This has implications for
the particles at the edge of the simulation box: they can contribute to voxels on multiple sides of the image. If this
effect is not taken into account, then the voxels close to the edge will have values that are too low because of missing
contributions.

All visualisation functions by default assume a periodic box. Rather than simply summing each individual particle
once, eight additional periodic copies of each particle are also taken into account. Most copies will contribute outside
the valid voxel range, but the copies that do not ensure that voxels close to the edge receive all necessary contributions.
Thanks to Numba optimisations, the overhead of these additional copies is relatively small.

There are some caveats with this approach. If you try to visualise a subset of the particles in the box (e.g. using a
mask), then only periodic copies of particles in this subset will be used. If the subset does not include particles on
the other side of the periodic boundary, then these will still be missing from the voxel cube. The same is true if you
visualise a region of the box. The periodic boundary wrapping is also not compatible with rotations (see below) and
should therefore not be used together with a rotation.

32 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

4.3.3 Rotations

Rotations of the box prior to volume rendering are provided in a similar fashion to the swiftsimio.visualisation.
projection sub-module, by using the swiftsimio.visualisation.rotation sub-module. To rotate the per-
spective prior to slicing a rotation_center argument in render_gas() needs to be provided, specifying the point
around which the rotation takes place. The angle of rotation is specified with a matrix, supplied by rotation_matrix
in render_gas(). The rotation matrix may be computed with rotation_matrix_from_vector(). This will result
in the perspective being rotated to be along the provided vector. This approach to rotations applied to the above example
is shown below.

from swiftsimio import load
from swiftsimio.visualisation.volume_render import render_gas
from swiftsimio.visualisation.rotation import rotation_matrix_from_vector

data = load("cosmo_volume_example.hdf5")

First create a mass-weighted temperature dataset
data.gas.mass_weighted_temps = data.gas.masses * data.gas.temperatures

Specify the rotation parameters
center = 0.5 * data.metadata.boxsize
rotate_vec = [0.5,0.5,1]
matrix = rotation_matrix_from_vector(rotate_vec, axis='z')

Map in msun / mpc^3
mass_cube = render_gas(

data,
resolution=256,
project="masses",
rotation_matrix=matrix,
rotation_center=center,
parallel=True,
periodic=False, # disable periodic boundaries for rotations

)

Map in msun * K / mpc^3
mass_weighted_temp_cube = render_gas(

data,
resolution=256,
project="mass_weighted_temps",
rotation_matrix=matrix,
rotation_center=center,
parallel=True,
periodic=False,

)

A 256 x 256 x 256 cube with dimensions of temperature
temp_cube = mass_weighted_temp_cube / mass_cube

4.3. Volume Rendering 33

SWIFTsimIO, Release 7.0.0

4.3.4 Lower-level API

The lower-level API for volume rendering allows for any general positions, smoothing lengths, and smoothed quantities,
to generate a pixel grid that represents the smoothed, volume rendered, version of the data.

This API is available through swiftsimio.visualisation.volume_render.scatter() and swiftsimio.
visualisation.volume_render.scatter_parallel() for the parallel version. The parallel version uses sig-
nificantly more memory as it allocates a thread-local image array for each thread, summing them in the end. Here we
will only describe the scatter variant, but they behave in the exact same way.

To use this function, you will need:

• x-positions of all of your particles, x.

• y-positions of all of your particles, y.

• z-positions of all of your particles, z.

• A quantity which you wish to smooth for all particles, such as their mass, m.

• Smoothing lengths for all particles, h.

• The resolution you wish to make your cube at, res.

Optionally, you will also need: + the size of the simulation box in x, y and z, box_x, box_y and box_z.

The key here is that only particles in the domain [0, 1] in x, [0, 1] in y, and [0, 1] in z. will be visible in the cube. You
may have particles outside of this range; they will not crash the code, and may even contribute to the image if their
smoothing lengths overlap with [0, 1]. You will need to re-scale your data such that it lives within this range. Then you
may use the function as follows:

from swiftsimio.visualisation.volume_render import scatter

Using the variable names from above
out = scatter(x=x, y=y, z=z, h=h, m=m, res=res)

out will be a 3D numpy grid of shape [res, res, res]. You will need to re-scale this back to your original dimen-
sions to get it in the correct units, and do not forget that it now represents the smoothed quantity per volume.

If the optional arguments box_x, box_y and box_z are provided, they should contain the simulation box size in the
same re-scaled coordinates as x, y and z. The rendering function will then correctly apply periodic boundary wrapping.
If box_x, box_y and box_z are not provided or set to 0, no periodic boundaries are applied

4.4 Tools

swiftsimio includes a few tools to help you make your visualisations ‘prettier’. Below we describe these tools and
their use.

34 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

4.4.1 2D Color Maps

The swiftsimio.visualisation.tools.cmaps module includes three objects that can be used to deploy two di-
mensional colour maps. The first, swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2D, and
second swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2DHSV , allow you to generate new
color maps from sets of colors and coordinates.

bower = LinearSegmentedCmap2D(
colors=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]],
coordinates=[[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
name="bower"

)

This generates a color map that is a quasi-linear interpolation between all of the points. The map can be displayed using
the plot method,

fig, ax = plt.subplots()

bower.plot(ax)

Which generates:

Finally, the color map can be applied to data by calling it:

4.4. Tools 35

SWIFTsimIO, Release 7.0.0

def vertical_func(x):
return abs(1.0 - 2.0 * x)

def horizontal_func(y):
return y ** 2

raster_at = np.linspace(0, 1, 1024)

x, y = np.meshgrid(horizontal_func(raster_at), vertical_func(raster_at))

imaged = bower(x, y)

plt.imsave("test_2d_cmap_output.png", imaged)

Where here imaged is an RGBA array. This outputs:

36 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

The final type of 2D color map is loaded from an image, such as the one displayed below which is similar to the famous
color map used for the Millenium simulation.

4.4. Tools 37

SWIFTsimIO, Release 7.0.0

This can be loaded using the swiftsimio.visualisation.tools.cmaps.ImageCmap2D class, as follows:

mill = ImageCmap2D(filename="millenium_cmap.png")

and can be used similarly to the other color maps. For the example above, this outputs the following:

38 Chapter 4. Visualisation

SWIFTsimIO, Release 7.0.0

This is the recommended way to use two dimensional color maps, as their generation can be quite complex and best
left to image-generation programs such as GIMP or Photoshop.

4.4. Tools 39

SWIFTsimIO, Release 7.0.0

40 Chapter 4. Visualisation

CHAPTER

FIVE

VELOCIRAPTOR INTEGRATION

swiftsimio can be used with the velociraptor library to extract the particles contained within a given halo and its
surrounding region.

The velociraptor library has documentation also available on ReadTheDocs here. It can be installed from PyPI
using pip install velociraptor.

The overarching workflow for this integration is as follows:

• Load the halo catalogue and groups file using the velociraptor module.

• Get two objects, corresponding to the bound and unbound particles, for a halo.

• Use the to_swiftsimio_dataset to load the region around the halo with our ahead-of-time masking technique.

• Use the region around the halo directly, or use the mask provided for each particle type to only consider bound
particles.

This workflow is explored below. You can use the example data available below if you do not have any SWIFT and
VELOCIraptor data available.

http://virgodb.cosma.dur.ac.uk/swift-webstorage/IOExamples/small_cosmo_volume.zip

5.1 Example

First, we must load the VELOCIraptor catalogue as follows:

from velociraptor import load as load_catalogue
from velociraptor.particles import load_groups

catalogue_name = "velociraptor"
snapshot_name = "snapshot"

catalogue = load_catalogue(f"{catalogue_name}.properties")
groups = load_groups(f"{catalogue_name}.catalog_groups", catalogue=catalogue)

Then, to extract the largest halo in the volume

particles, unbound_particles = groups.extract_halo(halo_id=0)

To load the particles to a swiftsimio dataset,

41

http://velociraptor-python.readthedocs.org/

SWIFTsimIO, Release 7.0.0

from velociraptor.swift.swift import to_swiftsimio_dataset

data, mask = to_swiftsimio_dataset(
particles,
f"{snapshot_name}.hdf5",
generate_extra_mask=True

)

with the generate_extra_mask providing the second return value which is a mask to extract only the bound particles
in the system.

Making an image of the full box shows that only a small subsection of the volume has been loaded (those within twice
the maximal usable radius within VELOCIraptor)

The code for making this image is as follows:

from swiftsimio.visualisation import project_gas_pixel_grid
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm

grid = project_gas_pixel_grid(data=data, resolution=1024)

fig, ax = plt.subplots(figsize=(4, 4), dpi=1024 // 4)
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
ax.imshow(grid.T, origin="lower", cmap="inferno", norm=LogNorm(vmin=1e4, clip=True))
fig.savefig("load_halo_fullbox.png")

To make an image of just the central halo, we can access properties on the particles instance to get the position of
the halo.

42 Chapter 5. VELOCIraptor Integration

SWIFTsimIO, Release 7.0.0

region = [
particles.x_mbp - particles.r_200crit, particles.x_mbp + particles.r_200crit,
particles.y_mbp - particles.r_200crit, particles.y_mbp + particles.r_200crit,

]

grid = project_gas_pixel_grid(data=data, resolution=1024, region=region)

fig, ax = plt.subplots(figsize=(4, 4), dpi=1024 // 4)
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
ax.imshow(grid.T, origin="lower", cmap="inferno", norm=LogNorm(vmin=1e4, clip=True))
fig.savefig("load_halo_selection.png")

This produces the following image:

Then, finally, we can visualise only the bound particles, through the use of the mask object that was returned when we
initially extracted the swiftsimio dataset:

grid = project_gas_pixel_grid(data=data, resolution=1024, region=region, mask=mask.gas)

fig, ax = plt.subplots(figsize=(4, 4), dpi=1024 // 4)
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
ax.imshow(grid.T, origin="lower", cmap="inferno", norm=LogNorm(vmin=1e4, clip=True))
fig.savefig("load_halo_bound_selection.png")

Producing the following image:

5.1. Example 43

SWIFTsimIO, Release 7.0.0

Hopefully, when you use this feature, you have more exciting data to use than the as-small-as-possible example that we
show here!

44 Chapter 5. VELOCIraptor Integration

CHAPTER

SIX

CREATING INITIAL CONDITIONS

Writing datasets that are valid for consumption for cosmological codes can be difficult, especially when considering
how to best use units. SWIFT uses a different set of internal units (specified in your parameter file) that does not
necessarily need to be the same set of units that initial conditions are specified in. Nevertheless, it is important to
ensure that units in the initial conditions are all consistent with each other. To facilitate this, we use unyt arrays. The
below example generates randomly placed gas particles with uniform densities.

The functionality to create initial conditions is available through the swiftsimio.writer sub-module, and the top-
level swiftsimio.Writer object.

Note that the properties that swiftsimio requires in the initial conditions are the only ones that are actually read by
SWIFT; other fields will be left un-read and as such should not be included in initial conditions files.

A current known issue is that due to inconsistencies with the initial conditions and simulation snapshots, swiftsimio
is not actually able to read the inititial conditions that it produces. We are aiming to fix this in an upcoming release.

6.1 Example

from swiftsimio import Writer
from swiftsimio.units import cosmo_units

import unyt
import numpy as np

Box is 100 Mpc
boxsize = 100 * unyt.Mpc

Generate object. cosmo_units corresponds to default Gadget-oid units
of 10^10 Msun, Mpc, and km/s
x = Writer(cosmo_units, boxsize)

32^3 particles.
n_p = 32**3

Randomly spaced coordinates from 0, 100 Mpc in each direction
x.gas.coordinates = np.random.rand(n_p, 3) * (100 * unyt.Mpc)

Random velocities from 0 to 1 km/s
x.gas.velocities = np.random.rand(n_p, 3) * (unyt.km / unyt.s)

Generate uniform masses as 10^6 solar masses for each particle
(continues on next page)

45

SWIFTsimIO, Release 7.0.0

(continued from previous page)

x.gas.masses = np.ones(n_p, dtype=float) * (1e6 * unyt.msun)

Generate internal energy corresponding to 10^4 K
x.gas.internal_energy = (

np.ones(n_p, dtype=float) * (1e4 * unyt.kb * unyt.K) / (1e6 * unyt.msun)
)

Generate initial guess for smoothing lengths based on MIPS
x.gas.generate_smoothing_lengths(boxsize=boxsize, dimension=3)

If IDs are not present, this automatically generates
x.write("test.hdf5")

Then, running h5glance on the resulting test.hdf5 produces:

test.hdf5
Header
5 attributes:
BoxSize: 100.0
Dimension: array [int64: 1]
Flag_Entropy_ICs: 0
NumPart_Total: array [int64: 6]
NumPart_Total_HighWord: array [int64: 6]

PartType0
Coordinates [float64: 32768 × 3]
InternalEnergy [float64: 32768]
Masses [float64: 32768]
ParticleIDs [float64: 32768]
SmoothingLength [float64: 32768]
Velocities [float64: 32768 × 3]

Units
5 attributes:

Unit current in cgs (U_I): array [float64: 1]
Unit length in cgs (U_L): array [float64: 1]
Unit mass in cgs (U_M): array [float64: 1]
Unit temperature in cgs (U_T): array [float64: 1]
Unit time in cgs (U_t): array [float64: 1]

Note you do need to be careful that your choice of unit system does not allow values over 2^31, i.e. you need to ensure
that your provided values (with units) when written to the file are safe to be interpreted as (single-precision) floats. The
only exception to this is coordinates which are stored in double precision.

46 Chapter 6. Creating Initial Conditions

CHAPTER

SEVEN

STATISTICS FILES

swiftsimio includes routines to load log files, such as the SFR.txt and energy.txt. This is available through the
swiftsimio.statistics.SWIFTStatisticsFile object, or through the main load_statistics function.

7.1 Example

from swiftsimio import load_statistics

data = load_statistics("energy.txt")

print(data)

print(x.total_mass.name)

Will output:

Statistics file: energy.txt, containing fields: #, step, time, a, z, total_mass,
gas_mass, dm_mass, sink_mass, star_mass, bh_mass, gas_z_mass, star_z_mass,
bh_z_mass, kin_energy, int_energy, pot_energy, rad_energy, gas_entropy, com_x,
com_y, com_z, mom_x, mom_y, mom_z, ang_mom_x, ang_mom_y, ang_mom_z

'Total mass in the simulation'

47

SWIFTsimIO, Release 7.0.0

48 Chapter 7. Statistics Files

CHAPTER

EIGHT

COMMAND-LINE UTILITIES

swiftsimio comes with some useful command-line utilities. Basic documentation for these is provided below, but
you can always find up-to-date documentation by invoking these with -h or --help.

8.1 swiftsnap

The swiftsnap utility, introduced in swiftsimio version 3.1.2, allows you to preview the metadata inside a SWIFT
snapshot file. Simply invoke it with the path to a snapshot, and it will show you a selection of useful metadata. See
below for an example.

swiftsnap output_0103.hdf5

Produces the following output:

Untitled SWIFT simulation
Written at: 2020-06-01 08:44:51
Active policies: cosmological integration, hydro, keep, self gravity, steal
Output type: Snapshot, Output selection: Snapshot
LLVM/Clang (11.0.0)
Non-MPI version of SWIFT
SWIFT (io_selection_changes)
v0.8.5-725-g10d7d5b3-dirty
2020-05-29 18:00:58 +0100
Simulation state: z=0.8889, a=0.5294, t=6.421 Gyr
H_0=70.3 km/(Mpc*s), _crit=1.433e-05 cm**(-3)
_b=0.0455, _k=0, _lambda=0.724, _m=0.276, _r=0
=-1, _0=-1, _a=0
Gravity scheme: With per-particle softening
Hydrodynamics scheme: Gadget-2 version of SPH (Springel 2005)
Chemistry model: None
Cooling model: None
Entropy floor: None
Feedback model: None
Tracers: None

49

SWIFTsimIO, Release 7.0.0

50 Chapter 8. Command-line Utilities

CHAPTER

NINE

API DOCUMENTATION

9.1 swiftsimio package

swiftsimio.validate_file(filename)
Checks that the provided file is a SWIFT dataset.

Parameters
filename (str) – name of file we want to check is a dataset

Returns
if filename is a SWIFT dataset return True, otherwise raise exception

Return type
bool

Raises
KeyError – Crash if the file is not a SWIFT data file

swiftsimio.mask(filename, spatial_only=True)→ SWIFTMask
Sets up a masking object for you to use with the correct units and metadata available.

Parameters

• filename (str) – SWIFT data file to read from

• spatial_only (bool, optional) – Flag for only spatial masking, this is much faster but
will not allow you to use masking on other variables (e.g. density). Defaults to True.

Returns
empty mask object set up with the correct units and metadata

Return type
SWIFTMask

Notes

If you are only planning on using this as a spatial mask, ensure that spatial_only remains true. If you require
the use of the constrain_mask function, then you will need to use the (considerably more expensive, ~bytes per
particle instead of ~bytes per cell spatial_only=False version).

swiftsimio.load(filename, mask=None)→ SWIFTDataset
Loads the SWIFT dataset at filename.

Parameters

• filename (str) – SWIFT snapshot file to read

51

SWIFTsimIO, Release 7.0.0

• mask (SWIFTMask, optional) – mask to apply when reading dataset

swiftsimio.load_statistics(filename)→ SWIFTStatisticsFile
Loads a SWIFT statistics file (SFR.txt, energy.txt).

Parameters
filename (str) – SWIFT statistics file path

9.1.1 Subpackages

swiftsimio.initial_conditions package

Initial conditions generation.

Submodules

swiftsimio.initial_conditions.generate_particles module

Particle generation code.

TBD

swiftsimio.visualisation package

Visualisation sub-module for swiftismio.

Subpackages

swiftsimio.visualisation.projection_backends package

Backends for density projection.

These go in order (within the dictionary) from fastest to most accurate, with the “_reference” style being a developer-
only indended feature.

Submodules

swiftsimio.visualisation.projection_backends.fast module

Fast backend.

This uses float32 precision and no special cases.

swiftsimio.visualisation.projection_backends.fast.scatter(x: float64, y: float64, m: float32, h:
float32, res: int, box_x: float64 = 0.0,
box_y: float64 = 0.0)→ ndarray

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

Parameters

52 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.fast.scatter_parallel(x: float64, y: float64, m:
float32, h: float32, res: int,
box_x: float64 = 0.0, box_y:
float64 = 0.0)→ ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

9.1. swiftsimio package 53

SWIFTsimIO, Release 7.0.0

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.gpu module

swiftsimio.visualisation.projection_backends.gpu.kernel(r: float32, H: float32)
Single precision kernel implementation for swiftsimio.

This is the Wendland-C2 kernel as shown in Denhen & Aly (2012)1.

Parameters

• r (float32) – radius used in kernel computation

• H (float32) – kernel width (i.e. radius of compact support for the kernel)

Returns
Contribution to the density by the particle

Return type
float32

References

Notes

This is the cuda-compiled version of the kernel, designed for use within the gpu backend. It has no double
precision cousin.

swiftsimio.visualisation.projection_backends.gpu.scatter_gpu(x: float64, y: float64, m: float32, h:
float32, box_x: float64, box_y:
float64, img: float32)

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles
1 Dehnen W., Aly H., 2012, MNRAS, 425, 1068

54 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

• img (np.array[float32]) – The output image.

Notes

Explicitly defining the types in this function allows for a performance improvement. This is the cuda version, and
as such can only be ran on systems with a supported GPU. Do not call this where cuda is not available (checks
can be performed using swiftsimio.optional_packages.CUDA_AVAILABLE)

swiftsimio.visualisation.projection_backends.gpu.scatter(x: float64, y: float64, m: float32, h:
float32, res: int, box_x: float64 = 0.0,
box_y: float64 = 0.0)→ ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

9.1. swiftsimio package 55

SWIFTsimIO, Release 7.0.0

Notes

Explicitly defining the types in this function allows a performance improvement.

swiftsimio.visualisation.projection_backends.gpu.scatter_parallel(x: float64, y: float64, m:
float32, h: float32, res: int,
box_x: float64 = 0.0, box_y:
float64 = 0.0)→ ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows a performance improvement.

swiftsimio.visualisation.projection_backends.histogram module

Reference evaluation - returns a 2d histogram (i.e. no smoothing).

Uses double precision.

swiftsimio.visualisation.projection_backends.histogram.scatter(x: float64, y: float64, m: float32,
h: float32, res: int, box_x: float64
= 0.0, box_y: float64 = 0.0)→
ndarray

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

56 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.histogram.scatter_parallel(x: float64, y: float64,
m: float32, h: float32,
res: int, box_x:
float64 = 0.0, box_y:
float64 = 0.0)→
ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

9.1. swiftsimio package 57

SWIFTsimIO, Release 7.0.0

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.kernels module

Projection kernels.

swiftsimio.visualisation.projection_backends.kernels.kernel_single_precision(r: float32, H:
float32)

Single precision kernel implementation for swiftsimio.

This is the Wendland-C2 kernel as shown in Denhen & Aly (2012)1.

Parameters

• r (float32) – radius used in kernel computation

• H (float32) – kernel width (i.e. radius of compact support for the kernel)

Returns
Contribution to the density by the particle

Return type
float32

See also:

kernel_double_precision

References

swiftsimio.visualisation.projection_backends.kernels.kernel_double_precision(r: float64, H:
float64)

Single precision kernel implementation for swiftsimio.

This is the Wendland-C2 kernel as shown in Denhen & Aly (2012)2.

Parameters

• r (float32) – radius used in kernel computation

• H (float32) – kernel width (i.e. radius of compact support for the kernel)
1 Dehnen W., Aly H., 2012, MNRAS, 425, 1068
2 Dehnen W., Aly H., 2012, MNRAS, 425, 1068

58 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Returns
Contribution to the density by the particle

Return type
float32

See also:

kernel_single_precision

References

swiftsimio.visualisation.projection_backends.reference module

Reference evaluation - only returns a ‘real’ result if no particles lie below the resolution limit.

Uses double precision.

swiftsimio.visualisation.projection_backends.reference.scatter(x: float64, y: float64, m: float32,
h: float32, res: int, box_x: float64
= 0.0, box_y: float64 = 0.0)→
ndarray

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

9.1. swiftsimio package 59

SWIFTsimIO, Release 7.0.0

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.reference.scatter_parallel(x: float64, y: float64,
m: float32, h: float32,
res: int, box_x:
float64 = 0.0, box_y:
float64 = 0.0)→
ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

60 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

swiftsimio.visualisation.projection_backends.renormalised module

Renormalised projection visualisation.

This version of the function is the same as fast but provides an explicit renormalisation of each kernel such that the
mass is conserved up to floating point precision.

swiftsimio.visualisation.projection_backends.renormalised.scatter(x: float64, y: float64, m:
float32, h: float32, res: int,
box_x: float64 = 0.0, box_y:
float64 = 0.0)→ ndarray

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.renormalised.scatter_parallel(x: float64, y:
float64, m:
float32, h: float32,
res: int, box_x:
float64 = 0.0,
box_y: float64 =
0.0)→ ndarray

Parallel implementation of scatter

9.1. swiftsimio package 61

SWIFTsimIO, Release 7.0.0

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.subsampled module

Sub-sampled smoothing kernel with each kernel evaluated at least 32^2 times. This uses a dithered pre-calculated
kernel for cell overlaps at small scales, and at large scales uses subsampling.

Uses double precision.

swiftsimio.visualisation.projection_backends.subsampled.scatter(x: float64, y: float64, m: float32,
h: float32, res: int, box_x:
float64 = 0.0, box_y: float64 =
0.0)→ ndarray

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

62 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.subsampled.scatter_parallel(x: float64, y: float64,
m: float32, h:
float32, res: int,
box_x: float64 = 0.0,
box_y: float64 =
0.0)→ ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

9.1. swiftsimio package 63

SWIFTsimIO, Release 7.0.0

scatter
Creates 2D scatter plot from SWIFT data

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.projection_backends.subsampled_extreme module

Sub-sampled smoothing kernel with each kernel evaluated at least 64^2 times. This uses a dithered pre-calculated
kernel for cell overlaps at small scales, and at large scales uses subsampling.

Uses double precision.

swiftsimio.visualisation.projection_backends.subsampled_extreme.scatter(x: float64, y: float64,
m: float32, h: float32,
res: int, box_x:
float64 = 0.0, box_y:
float64 = 0.0)→
ndarray

Creates a weighted scatter plot

Computes contributions to from particles with positions (x,`y`) with smoothing lengths h weighted by quantities
m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

64 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

Uses 4x the number of sampling points as in scatter in subsampled.py

swiftsimio.visualisation.projection_backends.subsampled_extreme.scatter_parallel(x: float64,
y: float64,
m: float32,
h: float32,
res: int,
box_x:
float64 =
0.0, box_y:
float64 =
0.0)→
ndarray

Parallel implementation of scatter

Creates a weighted scatter plot. Computes contributions from particles with positions (x,`y`) with smoothing
lengths h weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of pixels along one axis, i.e. this returns a square of res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x and y. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x and y. Used for
periodic wrapping.

Returns
pixel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter
Creates 2D scatter plot from SWIFT data

9.1. swiftsimio package 65

SWIFTsimIO, Release 7.0.0

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

Uses 4x the number of sampling points as in scatter_parallel in subsampled.py

swiftsimio.visualisation.tools package

Submodules

swiftsimio.visualisation.tools.cmaps module

Two-dimensional colour map support, along with example colour maps.

swiftsimio.visualisation.tools.cmaps.ensure_rgba(input_color: Iterable[float])→ array
Ensures a colour is RGBA compliant.

Default alpha if missing: 1.0.

Parameters
input_color (iterable) – An iterable of maximum length 4, with RGBA values encoded as
floating point 0.0 -> 1.0.

Returns
array_color – An array of length 4 as an RGBA color.

Return type
np.array

swiftsimio.visualisation.tools.cmaps.apply_color_map(first_values, second_values, map_grid)
Applies a 2D colour map by providing a 2D linear interpolation to the known fixed grid points. Not to be called
on its own, as the map itself is provided by the LinearSegmentedCmap2D, but this is provided separately so it
can be numba-accelerated.

Parameters

• first_values (iterable[float]) – Array or list to loop over, containing floats ranging
from 0.0 to 1.0. Provides the normalisation for the horizontal component. Must be one-
dimensional.

• second_values (iterable[float]) – Array or list to loop over, containing floats rang-
ing from 0.0 to 1.0. Provides the normalisation for the vertical component. Must be one-
dimensional.

• map_grid (np.ndarray) – 2D numpy array proided by LinearSegmentedCmap2D.

Returns
An N by 4 array (where N is the length of first_value and second_value) of RGBA com-
ponents.

Return type
np.ndarray

class swiftsimio.visualisation.tools.cmaps.Cmap2D(name: str | None = None, description: str | None =
None)

Bases: object

A generic two dimensional implementation of a colour map.

66 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Developer use only.

colors: List[List[float]] = None

coordinates: List[List[float]] = None

generate_color_map_grid()

Generates the colour map grid and stores it in _color_map_grid. Imeplementation dependent.

property color_map_grid

Generates, or gets, the color map grid.

plot(ax, include_points: bool = False)
Plot the color map on axes.

Parameters

• ax (matplotlib.Axis) – Axis to be plotted on.

• include_points (bool, optional) – If true, plot the individual colours as points that
make up the color map. Default: False.

class swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2D(colors: List[List[float]],
coordinates: List[List[float]],
name: str | None = None,
description: str | None = None)

Bases: Cmap2D

A two dimensional implementation of the linear segmented colour map.

generate_color_map_grid()

Generates the color map grid.

class swiftsimio.visualisation.tools.cmaps.LinearSegmentedCmap2DHSV(colors: List[List[float]],
coordinates:
List[List[float]], name: str |
None = None, description:
str | None = None)

Bases: Cmap2D

A two dimensional implementation of the linear segmented colour map, using the HSV space to combine the
colours.

Parameters

• colors (List[List[float]]) – Individual colors (at coordinates below) that make up
the color map.

• coordinates (List[List[float]]) – 2D coordinates in the plane to place the above
colors at.

• name (str, optional) – Name of this color map (metadata)

• description (str, optional) – Optional metadata description of this colour map.

See also:

LinearSegmentedCmap2D, a cousin of this class that combines colours using the RGB space rather than HSV
used here.

generate_color_map_grid()

Generates the color map grid.

9.1. swiftsimio package 67

SWIFTsimIO, Release 7.0.0

class swiftsimio.visualisation.tools.cmaps.ImageCmap2D(filename: str, name: str | None = None,
description: str | None = None)

Bases: Cmap2D

Creates a 2D color map from an image loaded from disk.

generate_color_map_grid()

Loads the image from file and stores it as the internal array.

Submodules

swiftsimio.visualisation.projection module

Calls functions from projection_backends.

swiftsimio.visualisation.projection.project_pixel_grid(data: __SWIFTParticleDataset, boxsize:
unyt_array, resolution: int, project: str |
None = 'masses', region: None | unyt_array
= None, mask: None | array = None,
rotation_matrix: None | array = None,
rotation_center: None | unyt_array = None,
parallel: bool = False, backend: str = 'fast',
periodic: bool = True)

Creates a 2D projection of a SWIFT dataset, projected by the “project” variable (e.g. if project is Temperature,
we return: bar{T} = sum_j T_j W_{ij}).

Default projection variable is mass. If it is None, then we don’t weight with anything, providing a number density
image.

Parameters

• data (__SWIFTParticleDataset) – The SWIFT dataset that you wish to visualise (get
this from load)

• boxsize (unyt_array) – The box-size of the simulation.

• resolution (int) – The resolution of the image. All images returned are square, res by
res, pixel grids.

• project (str, optional) – Variable to project to get the weighted density of. By default,
this is mass. If you would like to mass-weight any other variable, you can always create it as
data.gas.my_variable = data.gas.other_variable * data.gas.masses.

• region (unyt_array, optional) – Region, determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom edges) if it is not None.
It should have a length of four or six, and take the form: [x_min, x_max, y_min, y_max,
{z_min, z_max}]

• mask (np.array, optional) – Allows only a sub-set of the particles in data to be visu-
alised. Useful in cases where you have read data out of a velociraptor catalogue, or if you
only want to visualise e.g. star forming particles. This boolean mask is applied just before
visualisation.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

68 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a projection
along the z axis.

• parallel (bool, optional) – Defaults to False, whether or not to create the image in
parallel. The parallel version of this function uses significantly more memory.

• backend (str, optional) – Backend to use. See documentation for details. Defaults to
‘fast’.

• periodic (bool, optional) – Account for periodic boundary conditions for the simula-
tion box? Defaults to True.

Returns
image – Projected image with units of project / length^2, of size res x res.

Return type
unyt_array

Notes

• Particles outside of this range are still considered if their smoothing lengths overlap with the range.

• The returned array has x as the first component and y as the second component, which is the opposite to
what imshow requires. You should transpose the array if you want it to be visualised the ‘right way up’.

swiftsimio.visualisation.projection.project_gas_pixel_grid(data: SWIFTDataset, resolution: int,
project: str | None = 'masses', region:
None | unyt_array = None, mask: None
| array = None, rotation_matrix: None |
array = None, rotation_center: None |
unyt_array = None, parallel: bool =
False, backend: str = 'fast', periodic:
bool = True)

Creates a 2D projection of a SWIFT dataset, projected by the “project” variable (e.g. if project is Temperature,
we return: bar{T} = sum_j T_j W_{ij}).

This function is the same as project_gas but does not include units.

Default projection variable is mass. If it is None, then we don’t weight with anything, providing a number density
image.

Parameters

• data (SWIFTDataset) – The SWIFT dataset that you wish to visualise (get this from load)

• resolution (int) – The resolution of the image. All images returned are square, res by
res, pixel grids.

• project (str, optional) – Variable to project to get the weighted density of. By default,
this is mass. If you would like to mass-weight any other variable, you can always create it as
data.gas.my_variable = data.gas.other_variable * data.gas.masses.

• region (unyt_array, optional) – Region, determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom edges) if it is not None.
It should have a length of four or six, and take the form: [x_min, x_max, y_min, y_max,
{z_min, z_max}]

• mask (np.array, optional) – Allows only a sub-set of the particles in data to be visu-
alised. Useful in cases where you have read data out of a velociraptor catalogue, or if you

9.1. swiftsimio package 69

SWIFTsimIO, Release 7.0.0

only want to visualise e.g. star forming particles. This boolean mask is applied just before
visualisation.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a projection
along the z axis.

• parallel (bool, optional) – Defaults to False, whether or not to create the image in
parallel. The parallel version of this function uses significantly more memory.

• backend (str, optional) – Backend to use. See documentation for details. Defaults to
‘fast’.

• periodic (bool, optional) – Account for periodic boundary conditions for the simula-
tion box? Defaults to True.

Returns
image – Projected image with dimensions of project / length^2, of size res x res.

Return type
np.array

Notes

• Particles outside of this range are still considered if their smoothing lengths overlap with the range.

• The returned array has x as the first component and y as the second component, which is the opposite to
what imshow requires. You should transpose the array if you want it to be visualised the ‘right way up’.

swiftsimio.visualisation.projection.project_gas(data: SWIFTDataset, resolution: int, project: str |
None = 'masses', region: None | unyt_array = None,
mask: None | array = None, rotation_center: None |
unyt_array = None, rotation_matrix: None | array =
None, parallel: bool = False, backend: str = 'fast',
periodic: bool = True)

Creates a 2D projection of a SWIFT dataset, projected by the “project” variable (e.g. if project is Temperature,
we return: bar{T} = sum_j T_j W_{ij}).

Default projection variable is mass. If it is None, then we don’t weight with anything, providing a number density
image.

Parameters

• data (SWIFTDataset) – The SWIFT dataset that you wish to visualise (get this from load)

• resolution (int) – The resolution of the image. All images returned are square, res by
res, pixel grids.

• project (str, optional) – Variable to project to get the weighted density of. By default,
this is mass. If you would like to mass-weight any other variable, you can always create it as
data.gas.my_variable = data.gas.other_variable * data.gas.masses.

• region (unyt_array, optional) – Region, determines where the image will be created
(this corresponds to the left and right-hand edges, and top and bottom edges) if it is not None.
It should have a length of four or six, and take the form: [x_min, x_max, y_min, y_max,
{z_min, z_max}]

70 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

• mask (np.array, optional) – Allows only a sub-set of the particles in data to be visu-
alised. Useful in cases where you have read data out of a velociraptor catalogue, or if you
only want to visualise e.g. star forming particles. This boolean mask is applied just before
visualisation.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a projection
along the z axis.

• parallel (bool, optional) – Defaults to False, whether or not to create the image in
parallel. The parallel version of this function uses significantly more memory.

• backend (str, optional) – Backend to use. See documentation for details. Defaults to
‘fast’.

• periodic (bool, optional) – Account for periodic boundary conditions for the simula-
tion box? Defaults to True.

Returns
image – Projected image with units of project / length^2, of size res x res.

Return type
unyt_array

Notes

• Particles outside of this range are still considered if their smoothing lengths overlap with the range.

• The returned array has x as the first component and y as the second component, which is the opposite to
what imshow requires. You should transpose the array if you want it to be visualised the ‘right way up’.

swiftsimio.visualisation.rotation module

Rotation matrix calculation routines.

swiftsimio.visualisation.rotation.rotation_matrix_from_vector(vector: float64, axis: str = 'z')→
array

Calculate a rotation matrix from a vector. The comparison vector is assumed to be along an axis, x, y, or z (by
default this is z). The resulting rotation matrix gives a rotation matrix to align the co-ordinate axes to make the
projection be top-down along this axis.

Parameters

• vector (np.array[float64]) – 3D vector describing the top-down direction that you
wish to rotate to. For example, this could be the angular momentum vector for a galaxy if
you wish to produce a top-down projection.

• axis (str, optional) – String describing the axis to project along. This should be one of
x, y, or z. Defaults to z.

Returns
rotation_matrix – Rotation matrix (3x3).

Return type
np.array[float64]

9.1. swiftsimio package 71

SWIFTsimIO, Release 7.0.0

swiftsimio.visualisation.slice module

Sub-module for slice plots in SWFITSIMio.

swiftsimio.visualisation.slice.kernel(r: float | float32, H: float | float32)
Kernel implementation for swiftsimio.

Parameters

• r (float or float32) – Distance from particle

• H (float or float32) – Kernel width (i.e. radius of compact support of kernel)

Returns
Contribution to density by particle at distance r

Return type
float

Notes

Swiftsimio uses the Wendland-C2 kernel as described in1.

References

swiftsimio.visualisation.slice.slice_scatter(x: float64, y: float64, z: float64, m: float32, h: float32,
z_slice: float64, res: int, box_x: float64 = 0.0, box_y:
float64 = 0.0, box_z: float64 = 0.0)→ ndarray

Creates a scatter plot of the given quantities for a particles in a data slice including periodic boundary effects.

Parameters

• x (array of float64) – x-positions of the particles. Must be bounded by [0, 1].

• y (array of float64) – y-positions of the particles. Must be bounded by [0, 1].

• z (array of float64) – z-positions of the particles. Must be bounded by [0, 1].

• m (array of float32) – masses (or otherwise weights) of the particles

• h (array of float32) – smoothing lengths of the particles

• z_slice (float64) – the position at which we wish to create the slice

• res (int) – the number of pixels.

• box_x (float64) – box size in x, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_z (float64) – box size in z, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

Returns
output array for scatterplot image

Return type
ndarray of float32

1 Dehnen W., Aly H., 2012, MNRAS, 425, 1068

72 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

See also:

scatter
Create 3D scatter plot of SWIFT data

scatter_parallel
Create 3D scatter plot of SWIFT data in parallel

slice_scatter_parallel
Create scatter plot of a slice of data in parallel

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.slice.slice_scatter_parallel(x: float64, y: float64, z: float64, m: float32, h:
float32, z_slice: float64, res: int, box_x:
float64 = 0.0, box_y: float64 = 0.0, box_z:
float64 = 0.0)→ ndarray

Parallel implementation of slice_scatter

Creates a scatter plot of the given quantities for a particles in a data slice including periodic boundary effects.

Parameters

• x (array of float64) – x-positions of the particles. Must be bounded by [0, 1].

• y (array of float64) – y-positions of the particles. Must be bounded by [0, 1].

• z (array of float64) – z-positions of the particles. Must be bounded by [0, 1].

• m (array of float32) – masses (or otherwise weights) of the particles

• h (array of float32) – smoothing lengths of the particles

• z_slice (float64) – the position at which we wish to create the slice

• res (int) – the number of pixels.

• box_x (float64) – box size in x, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_z (float64) – box size in z, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

Returns
output array for scatterplot image

Return type
ndarray of float32

See also:

scatter
Create 3D scatter plot of SWIFT data

scatter_parallel
Create 3D scatter plot of SWIFT data in parallel

9.1. swiftsimio package 73

SWIFTsimIO, Release 7.0.0

slice_scatter
Create scatter plot of a slice of data

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.slice.slice_gas_pixel_grid(data: SWIFTDataset, resolution: int, z_slice:
unyt_quantity | None = None, project: str | None
= 'masses', parallel: bool = False,
rotation_matrix: None | array = None,
rotation_center: None | unyt_array = None,
region: None | unyt_array = None, periodic:
bool = True)

Creates a 2D slice of a SWIFT dataset, weighted by data field, in the form of a pixel grid.

Parameters

• data (SWIFTDataset) – Dataset from which slice is extracted

• resolution (int) – Specifies size of return array

• z_slice (unyt_quantity) – Specifies the location along the z-axis where the slice is to
be extracted, relative to the rotation center or the origin of the box if no rotation center is
provided. If the perspective is rotated this value refers to the location along the rotated z-
axis.

• project (str, optional) – Data field to be projected. Default is mass. If None then
simply count number of particles

• parallel (bool) – used to determine if we will create the image in parallel. This defaults
to False, but can speed up the creation of large images significantly at the cost of increased
memory usage.

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a slice per-
pendicular to the z axis.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

• region (unyt_array, optional) – determines where the image will be created (this cor-
responds to the left and right-hand edges, and top and bottom edges) if it is not None. It
should have a length of four, and take the form:

[x_min, x_max, y_min, y_max]

Particles outside of this range are still considered if their smoothing lengths overlap with the
range.

• periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

Returns
Creates a resolution x resolution array and returns it, without appropriate units.

Return type
ndarray of float32

See also:

74 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

render_gas_voxel_grid
Creates a 3D voxel grid from a SWIFT dataset

swiftsimio.visualisation.slice.slice_gas(data: SWIFTDataset, resolution: int, z_slice: unyt_quantity |
None = None, project: str | None = 'masses', parallel: bool =
False, rotation_matrix: None | array = None, rotation_center:
None | unyt_array = None, region: None | unyt_array = None,
periodic: bool = True)

Creates a 2D slice of a SWIFT dataset, weighted by data field

Parameters

• data (SWIFTDataset) – Dataset from which slice is extracted

• resolution (int) – Specifies size of return array

• z_slice (unyt_quantity) – Specifies the location along the z-axis where the slice is to
be extracted, relative to the rotation center or the origin of the box if no rotation center is
provided. If the perspective is rotated this value refers to the location along the rotated z-
axis.

• project (str, optional) – Data field to be projected. Default is mass. If None then
simply count number of particles

• parallel (bool, optional) – used to determine if we will create the image in parallel.
This defaults to False, but can speed up the creation of large images significantly at the cost
of increased memory usage.

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a slice per-
pendicular to the z axis.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

• region (array, optional) – determines where the image will be created (this corre-
sponds to the left and right-hand edges, and top and bottom edges) if it is not None. It
should have a length of four, and take the form:

[x_min, x_max, y_min, y_max]

Particles outside of this range are still considered if their smoothing lengths overlap with the
range.

• periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

Returns
a resolution x resolution array of the contribution of the projected data field to the voxel grid
from all of the particles

Return type
ndarray of float32

See also:

slice_gas_pixel

render_gas
Creates a 3D voxel grid of a SWIFT dataset with appropriate units

9.1. swiftsimio package 75

SWIFTsimIO, Release 7.0.0

Notes

This is a wrapper function for slice_gas_pixel_grid ensuring that output units are appropriate

swiftsimio.visualisation.smoothing_length_generation module

Routines for generating (approximate) smoothing lengths for particles that do not usually carry a smoothing length field
(e.g. dark matter).

swiftsimio.visualisation.smoothing_length_generation.generate_smoothing_lengths(coordinates:
unyt_array |
cosmo_array,
boxsize:
unyt_array |
cosmo_array,
ker-
nel_gamma:
float32,
neigh-
bours=32,
speedup_fac=2,
dimen-
sion=3)

Generates smoothing lengths that encompass a number of neighbours specified here.

Parameters

• coordinates (unyt_array or cosmo_array) – a cosmo_array that gives the co-
ordinates of all particles

• boxsize (unyt_array or cosmo_array) – the size of the box (3D)

• kernel_gamma (float32) – the kernel gamma of the kernel being used

• neighbours (int, optional) – the number of neighbours to encompass

• speedup_fac (int, optional) – a parameter that neighbours is divided by to provide a
speed-up by only searching for a lower number of neighbours. For example, if neighbours is
32, and speedup_fac is 2, we only search for 16 (32 / 2) neighbours, and extend the smoothing
length out to (speedup)**(1/dimension) such that we encompass an approximately higher
number of neighbours. A factor of 2 gives smoothing lengths the same as the full search
within 10%, good enough for visualisation.

• dimension (int, optional) – the dimensionality of the problem (used for speedup_fac
calculation).

Returns
smoothing lengths – an unyt array of smoothing lengths.

Return type
unyt_array

76 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

swiftsimio.visualisation.volume_render module

Basic volume render for SPH data. This takes the 3D positions of the particles and projects them onto a grid.

swiftsimio.visualisation.volume_render.scatter(x: float64, y: float64, z: float64, m: float32, h: float32,
res: int, box_x: float64 = 0.0, box_y: float64 = 0.0,
box_z: float64 = 0.0)→ ndarray

Creates a weighted voxel grid

Computes contributions to a voxel grid from particles with positions (x,`y`,`z`) with smoothing lengths h
weighted by quantities m. This includes periodic boundary effects.

Parameters

• x (np.array[float64]) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (np.array[float64]) – array of y-positions of the particles. Must be bounded by [0, 1].

• z (np.array[float64]) – array of z-positions of the particles. Must be bounded by [0, 1].

• m (np.array[float32]) – array of masses (or otherwise weights) of the particles

• h (np.array[float32]) – array of smoothing lengths of the particles

• res (int) – the number of voxels along one axis, i.e. this returns a cube of res * res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_z (float64) – box size in z, in the same rescaled length units as x, y and z. Used for
periodic wrapping

Returns
voxel grid of quantity

Return type
np.array[float32, float32, float32]

See also:

scatter_parallel
Parallel implementation of this function

slice_scatter
Create scatter plot of a slice of data

slice_scatter_parallel
Create scatter plot of a slice of data in parallel

9.1. swiftsimio package 77

SWIFTsimIO, Release 7.0.0

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.volume_render.scatter_parallel(x: float64, y: float64, z: float64, m: float32,
h: float32, res: int, box_x: float64 = 0.0,
box_y: float64 = 0.0, box_z: float64 = 0.0)
→ ndarray

Parallel implementation of scatter

Compute contributions to a voxel grid from particles with positions (x,`y`,`z`) with smoothing lengths h weighted
by quantities m. This ignores boundary effects.

Parameters

• x (array of float64) – array of x-positions of the particles. Must be bounded by [0, 1].

• y (array of float64) – array of y-positions of the particles. Must be bounded by [0, 1].

• z (array of float64) – array of z-positions of the particles. Must be bounded by [0, 1].

• m (array of float32) – array of masses (or otherwise weights) of the particles

• h (array of float32) – array of smoothing lengths of the particles

• res (int) – the number of voxels along one axis, i.e. this returns a cube of res * res * res.

• box_x (float64) – box size in x, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_y (float64) – box size in y, in the same rescaled length units as x, y and z. Used for
periodic wrapping.

• box_z (float64) – box size in z, in the same rescaled length units as x, y and z. Used for
periodic wrapping

Returns
voxel grid of quantity

Return type
ndarray of float32

See also:

scatter
Create voxel grid of quantity

slice_scatter
Create scatter plot of a slice of data

slice_scatter_parallel
Create scatter plot of a slice of data in parallel

78 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Notes

Explicitly defining the types in this function allows for a 25-50% performance improvement. In our testing, using
numpy floats and integers is also an improvement over using the numba ones.

swiftsimio.visualisation.volume_render.render_gas_voxel_grid(data: SWIFTDataset, resolution: int,
project: str | None = 'masses',
parallel: bool = False,
rotation_matrix: None | array =
None, rotation_center: None |
unyt_array = None, region: None |
unyt_array = None, periodic: bool =
True)

Creates a 3D render of a SWIFT dataset, weighted by data field, in the form of a voxel grid.

Parameters

• data (SWIFTDataset) – Dataset from which slice is extracted

• resolution (int) – Specifies size of return array

• project (str, optional) – Data field to be projected. Default is mass. If None then
simply count number of particles

• parallel (bool) – used to determine if we will create the image in parallel. This defaults
to False, but can speed up the creation of large images significantly at the cost of increased
memory usage.

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a volume
render viewed along the z axis.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

• region (unyt_array, optional) – determines where the image will be created (this cor-
responds to the left and right-hand edges, and top and bottom edges, and front and back
edges) if it is not None. It should have a length of six, and take the form:

[x_min, x_max, y_min, y_max, z_min, z_max]

Particles outside of this range are still considered if their smoothing lengths overlap with the
range.

• periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

Returns
Creates a resolution x resolution x resolution array and returns it, without appropriate units.

Return type
ndarray of float32

See also:

slice_gas_pixel_grid
Creates a 2D slice of a SWIFT dataset

9.1. swiftsimio package 79

SWIFTsimIO, Release 7.0.0

swiftsimio.visualisation.volume_render.render_gas(data: SWIFTDataset, resolution: int, project: str |
None = 'masses', parallel: bool = False,
rotation_matrix: None | array = None,
rotation_center: None | unyt_array = None, region:
None | unyt_array = None, periodic: bool = True)

Creates a 3D voxel grid of a SWIFT dataset, weighted by data field

Parameters

• data (SWIFTDataset) – Dataset from which slice is extracted

• resolution (int) – Specifies size of return array

• project (str, optional) – Data field to be projected. Default is mass. If None then
simply count number of particles

• parallel (bool) – used to determine if we will create the image in parallel. This defaults
to False, but can speed up the creation of large images significantly at the cost of increased
memory usage.

• rotation_matrix (np.array, optional) – Rotation matrix (3x3) that describes the ro-
tation of the box around rotation_center. In the default case, this provides a volume
render viewed along the z axis.

• rotation_center (np.array, optional) – Center of the rotation. If you are trying to
rotate around a galaxy, this should be the most bound particle.

• region (unyt_array, optional) – determines where the image will be created (this cor-
responds to the left and right-hand edges, and top and bottom edges, and front and back
edges) if it is not None. It should have a length of six, and take the form: [x_min, x_max,
y_min, y_max, z_min, z_max] Particles outside of this range are still considered if their
smoothing lengths overlap with the range.

• periodic (bool, optional) – Account for periodic boundaries for the simulation box?
Default is True.

Returns
a resolution x resolution x resolution array of the contribution of the projected data field to the
voxel grid from all of the particles

Return type
ndarray of float32

See also:

slice_gas
Creates a 2D slice of a SWIFT dataset with appropriate units

render_gas_voxel_grid
Creates a 3D voxel grid of a SWIFT dataset

80 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Notes

This is a wrapper function for slice_gas_pixel_grid ensuring that output units are appropriate

9.1.2 Submodules

swiftsimio.accelerated module

Functions that can be accelerated by numba. Numba does not use classes, unfortunately.

swiftsimio.accelerated.ranges_from_array(array: array)→ ndarray
Finds contiguous ranges of IDs in sorted list of IDs

Parameters
array (np.array of int) – sorted list of IDs

Returns
list of length two arrays corresponding to contiguous ranges of IDs (inclusive) in the input array

Return type
np.ndarray

Examples

The array

[0, 1, 2, 3, 5, 6, 7, 9, 11, 12, 13]

would return

[[0, 4], [5, 8], [9, 10], [11, 14]]

swiftsimio.accelerated.read_ranges_from_file_unchunked(handle: ~h5py._hl.dataset.Dataset, ranges:
~numpy.ndarray, output_shape:
~typing.Tuple, output_type: type = <class
'numpy.float64'>, columns:
~numpy.lib.index_tricks.IndexExpression =
slice(None, None, None))→ array

Takes a hdf5 dataset, and the set of ranges from ranges_from_array, and reads only those ranges from the file.

Unfortunately this functionality is not built into HDF5.

Parameters

• handle (Dataset) – HDF5 dataset to slice data from

• ranges (np.ndarray) – Array of ranges (see ranges_from_array())

• output_shape (Tuple) – Resultant shape of output.

• output_type (type, optional) – numpy type of output elements. If not supplied, we
assume np.float64.

• columns (np.lib.index_tricks.IndexExpression, optional) – Selector for
columns if using a multi-dimensional array. If the array is only a single dimension this is
not used.

Returns
array – Result from reading only the relevant values from handle.

9.1. swiftsimio package 81

SWIFTsimIO, Release 7.0.0

Return type
np.ndarray

swiftsimio.accelerated.index_dataset(handle: Dataset, mask_array: array)→ array
Indexes the dataset using the mask array.

This is not currently a feature of h5py. (March 2019)

Parameters

• handle (Dataset) – data to be indexed

• mask_array (np.array) – mask used to index data

Returns
Subset of the data specified by the mask

Return type
np.array

swiftsimio.accelerated.concatenate_ranges(ranges: ndarray)→ ndarray
Returns an array of ranges with consecutive ranges merged if there is no gap between them

Parameters
ranges (np.ndarray) – Array of ranges (see ranges_from_array())

Returns
two dimensional array of ranges

Return type
np.ndarray

Examples

>>> concatenate_ranges([[1,5],[6,10],[12,15]])
np.ndarray([[1,10],[12,15]])

swiftsimio.accelerated.get_chunk_ranges(ranges: ndarray, chunk_size: ndarray, array_length: int)→
ndarray

Return indices indicating which hdf5 chunk each range from ranges belongs to

Parameters

• ranges (np.ndarray) – Array of ranges (see ranges_from_array())

• chunk_size (int) – size of the hdf5 dataset chunks

• array_length (int) – size of the dataset

Returns
two dimensional array of bounds for the chunks that contain each range from ranges

Return type
np.ndarray

swiftsimio.accelerated.expand_ranges(ranges: ndarray)→ array
Return an array of indices that are within the specified ranges

Parameters
ranges (np.ndarray) – Array of ranges (see ranges_from_array())

82 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Returns
1D array of indices that fall within each range specified in ranges

Return type
np.array

swiftsimio.accelerated.extract_ranges_from_chunks(array: ndarray, chunks: ndarray, ranges: ndarray)
→ ndarray

Returns elements from array that are located within specified ranges

array is a portion of the dataset being read consisting of all the chunks that contain the ranges specified in ranges.
The chunks array contains the indices of the upper and lower bounds of these chunks. To find the elements of
the dataset that lie within the specified ranges we first create an array indexing which chunk each range belongs
to. From this information we create an array of adjusted ranges that takes into account that the array is not the
whole dataset. We then return the values in array that are within the adjusted ranges.

Parameters

• array (np.ndarray) – array containing data read in from snapshot

• chunks (np.ndarray) – two dimensional array of bounds for the chunks that contain each
range from ranges

• ranges (np.ndarray) – Array of ranges (see ranges_from_array())

Returns
subset of array whose elements are within each range in ranges

Return type
np.ndarray

swiftsimio.accelerated.read_ranges_from_file_chunked(handle: ~h5py._hl.dataset.Dataset, ranges:
~numpy.ndarray, output_shape: ~typing.Tuple,
output_type: type = <class 'numpy.float64'>,
columns:
~numpy.lib.index_tricks.IndexExpression =
slice(None, None, None))→ array

Takes a hdf5 dataset, and the set of ranges from ranges_from_array, and reads only those ranges from the file.

Unfortunately this functionality is not built into HDF5.

Parameters

• handle (Dataset) – HDF5 dataset to slice data from

• ranges (np.ndarray) – Array of ranges (see ranges_from_array())

• output_shape (Tuple) – Resultant shape of output.

• output_type (type, optional) – numpy type of output elements. If not supplied, we
assume np.float64.

• columns (np.lib.index_tricks.IndexExpression, optional) – Selector for
columns if using a multi-dimensional array. If the array is only a single dimension this is
not used.

Returns
array – Result from reading only the relevant values from handle.

Return type
np.ndarray

9.1. swiftsimio package 83

SWIFTsimIO, Release 7.0.0

swiftsimio.accelerated.read_ranges_from_file(handle: ~h5py._hl.dataset.Dataset, ranges:
~numpy.ndarray, output_shape: ~typing.Tuple,
output_type: type = <class 'numpy.float64'>, columns:
~numpy.lib.index_tricks.IndexExpression = slice(None,
None, None))→ array

Wrapper function to correctly select which version of read_ranges_from_file should be used

Parameters

• handle (Dataset) – HDF5 dataset to slice data from

• ranges (np.ndarray) – Array of ranges (see ranges_from_array())

• output_shape (Tuple) – Resultant shape of output.

• output_type (type, optional) – numpy type of output elements. If not supplied, we
assume np.float64.

• columns (np.lib.index_tricks.IndexExpression, optional) – Selector for
columns if using a multi-dimensional array. If the array is only a single dimension this is
not used.

Returns
array – Result from reading only the relevant values from handle.

Return type
np.ndarray

See also:

read_ranges_from_file_chunked
reads data within specified ranges for chunked hdf5

file, unchunked

swiftsimio.accelerated.list_of_strings_to_arrays(lines: List[str])→ array
Converts a list of space-delimited values to arrays.

Parameters
lines (List[str]) – List of strings containing numbers separated by a set of spaces.

Returns
arrays – List of numpy arrays, one per column.

Return type
List[np.array]

Notes

Currently not suitable for numba acceleration due to mixed datatype usage.

84 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

swiftsimio.conversions module

Includes conversions between SWIFT internal values and astropy ones for convenience.

swiftsimio.conversions.swift_cosmology_to_astropy(cosmo: dict, units)→ dict

swiftsimio.masks module

Loading functions and objects that use masked information from the SWIFT snapshots.

class swiftsimio.masks.SWIFTMask(metadata: SWIFTMetadata, spatial_only=True)
Bases: object

Main masking object. This can have masks for any present particle field in it. Pass in the SWIFTMetadata.

constrain_mask(ptype: str, quantity: str, lower: unyt_quantity, upper: unyt_quantity)
Constrains the mask further for a given particle type, and bounds a quantity between lower and upper values.

We update the mask such that

lower < ptype.quantity <= upper

The quantities must have units attached.

Parameters

• ptype (str) – particle type

• quantity (str) – quantity being constrained

• lower (unyt.array.unyt_quantity) – constraint lower bound

• upper (unyt.array.unyt_quantity) – constraint upper bound

See also:

constrain_spatial
method to generate spatially constrained cell mask

constrain_spatial(restrict)
Uses the cell metadata to create a spatial mask.

This mask is necessarily approximate and is coarse-grained to the cell size.

Parameters
restrict (list) – length 3 list of length two arrays giving the lower and upper bounds for
that axis, e.g.

restrict = [
[0.5, 0.7], [0.1, 0.9], [0.0, 0.1]

]

These values must have units associated with them. It is also acceptable to have a row as
None to not restrict in this direction.

See also:

constrain_mask
method to further refine mask

9.1. swiftsimio package 85

SWIFTsimIO, Release 7.0.0

convert_masks_to_ranges()

Converts the masks to range masks so that they take up less space.

This is non-reversible. It is also not required, but can help save space on highly constrained machines before
you start reading in the data.

If you don’t know what you are doing please don’t use this.

get_masked_counts_offsets() -> (typing.Dict[str, <built-in function array>], typing.Dict[str, <built-in
function array>])

Returns the particle counts and offsets in cells selected by the mask

Returns

Dictionaries containing the particle offets and counts for each particle type. For example, the
particle counts dictionary would be of the form

{"gas": [g_0, g_1, ...],
"dark matter": [bh_0, bh_1, ...], ...}

where the keys would be each of the particle types and values are arrays of the number of
corresponding particles in each cell (in this case there would be g_0 gas particles in the first
cell, g_1 in the second, etc.). The structure of the dictionaries is the same for the offsets, with
the arrays now storing the offset of the first particle in the cell.

Return type
Dict[str, np.array], Dict[str, np.array]

swiftsimio.objects module

Contains global objects, e.g. the superclass version of the unyt_array that we use, called cosmo_array.

exception swiftsimio.objects.InvalidScaleFactor(message=None, *args)
Bases: Exception

Raised when a scale factor is invalid, such as when adding two cosmo_factors with inconsistent scale factors.

class swiftsimio.objects.cosmo_factor(expr, scale_factor)
Bases: object

Cosmology factor class for storing and computing conversion between comoving and physical coordinates.

This takes the expected exponent of the array that can be parsed by sympy, and the current value of the cosmo-
logical scale factor a.

This should be given as the conversion from comoving to physical, i.e.

r = cosmo_factor * r’ with r in physical and r’ comoving

86 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Examples

Typically this would make cosmo_factor = a for the conversion between comoving positions r’ and physical
co-ordinates r.

To do this, use the a imported from objects multiplied as you’d like:

density_cosmo_factor = cosmo_factor(a**3, scale_factor=0.97)

property a_factor

The a-factor for the unit.

e.g. for density this is 1 / a**3.

Returns
the a-factor for given unit

Return type
float

property redshift

Compute the redshift from the scale factor.

Returns
redshift from the given scale factor

Return type
float

Notes

Returns the redshift ..math:: z = frac{1}{a} - 1, where :math: a is the scale factor

class swiftsimio.objects.cosmo_array(input_array, units=None, registry=None, dtype=None,
bypass_validation=False, input_units=None, name=None,
cosmo_factor=None, comoving=True, compression=None)

Bases: unyt_array

Cosmology array class.

This inherits from the unyt.unyt_array, and adds three variables: compression, cosmo_factor, and comoving.
Data is assumed to be comoving when passed to the object but you can override this by setting the latter flag to
be False.

Parameters
unyt_array (unyt.unyt_array) – the inherited unyt_array

comoving

if True then the array is in comoving co-ordinates, and if False then it is in physical units.

Type
bool

cosmo_factor

Object to store conversion data between comoving and physical coordinates

Type
float

9.1. swiftsimio package 87

SWIFTsimIO, Release 7.0.0

compression

String describing any compression that was applied to this array in the hdf5 file.

Type
string

astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

• dtype (str or dtype) – Typecode or data-type to which the array is cast.

• order ({'C', 'F', 'A', 'K'}, optional) – Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

• casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) – Controls
what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

– ’no’ means the data types should not be cast at all.

– ’equiv’ means only byte-order changes are allowed.

– ’safe’ means only casts which can preserve values are allowed.

– ’same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

– ’unsafe’ means any data conversions may be done.

• subok (bool, optional) – If True, then sub-classes will be passed-through (default),
otherwise the returned array will be forced to be a base-class array.

• copy (bool, optional) – By default, astype always returns a newly allocated array. If
this is set to false, and the dtype, order, and subok requirements are satisfied, the input
array is returned instead of a copy.

Returns
arr_t – Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as the input
array, with dtype, order given by dtype, order.

Return type
ndarray

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the
string dtype length is long enough to store the max integer/float value converted.

Raises
ComplexWarning – When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

88 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

in_units(*args, **kwargs)
Creates a copy of this array with the data converted to the supplied units, and returns it.

Optionally, an equivalence can be specified to convert to an equivalent quantity which is not in the same
dimensions.

Parameters

• units (Unit object or string) – The units you want to get a new quantity in.

• equivalence (string, optional) – The equivalence you wish to use. To see which
equivalencies are supported for this object, try the list_equivalencies method. De-
fault: None

• kwargs (optional) – Any additional keyword arguments are supplied to the equivalence

Raises

• If the provided unit does not have the same dimensions as the array
–

• this will raise a UnitConversionError –

Examples

>>> from unyt import c, gram
>>> m = 10*gram
>>> E = m*c**2
>>> print(E.in_units('erg'))
8.987551787368176e+21 erg
>>> print(E.in_units('J'))
898755178736817.6 J

byteswap(inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex
number are swapped individually.

Parameters
inplace (bool, optional) – If True, swap bytes in-place, default is False.

Returns
out – The byteswapped array. If inplace is True, this is a view to self.

Return type
ndarray

9.1. swiftsimio package 89

SWIFTsimIO, Release 7.0.0

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

A.newbyteorder().byteswap() produces an array with the same values
but different representation in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress
equivalent function

diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also:

numpy.diagonal
equivalent function

flatten(order='C')
Return a copy of the array collapsed into one dimension.

90 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Parameters
order ({'C', 'F', 'A', 'K'}, optional) – ‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to
flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y – A copy of the input array, flattened to one dimension.

Return type
ndarray

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

newbyteorder(new_order='S', /)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order (string, optional) – Byte order to force; a value from the byte order speci-
fications below. new_order codes can be any of:

• ’S’ - swap dtype from current to opposite endian

• {‘<’, ‘little’} - little endian

• {‘>’, ‘big’} - big endian

• {‘=’, ‘native’} - native order, equivalent to sys.byteorder

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.

Returns
new_arr – New array object with the dtype reflecting given change to the byte order.

Return type
array

9.1. swiftsimio package 91

SWIFTsimIO, Release 7.0.0

ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat
equivalent function

reshape(shape, order='C')
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape
equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape pa-
rameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.
reshape((10, 11)).

swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

take(indices, axis=None, out=None, mode='raise')
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take
equivalent function

92 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

transpose(*axes)
Returns a view of the array with axes transposed.

Refer to numpy.transpose for full documentation.

Parameters
axes (None, tuple of ints, or n ints) –

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the
transposed array’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form).

Returns
p – View of the array with its axes suitably permuted.

Return type
ndarray

See also:

transpose
Equivalent function.

ndarray.T
Array property returning the array transposed.

ndarray.reshape
Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

9.1. swiftsimio package 93

SWIFTsimIO, Release 7.0.0

view([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float_').

Parameters

• dtype (data-type or ndarray sub-class, optional) – Data-type descriptor of
the returned view, e.g., float32 or int16. Omitting it results in the view having the same
data-type as a. This argument can also be specified as an ndarray sub-class, which then
specifies the type of the returned object (this is equivalent to setting the type parameter).

• type (Python type, optional) – Type of the returned view, e.g., ndarray or matrix.
Again, omission of the parameter results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a
different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndar-
ray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis of a must be con-
tiguous. This axis will be resized in the result.

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
(continues on next page)

94 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

(continued from previous page)

>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
>>> y = x[:, ::2]
>>> y
array([[1, 3],

[4, 6]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...
ValueError: To change to a dtype of a different size, the last axis must be␣
→˓contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 3)],

[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of
the axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
>>> x.transpose(1, 0, 2).view(np.int16)
array([[[256, 770],

[3340, 3854]],

[[1284, 1798],
[4368, 4882]],

[[2312, 2826],
[5396, 5910]]], dtype=int16)

9.1. swiftsimio package 95

SWIFTsimIO, Release 7.0.0

property T

View of the transposed array.

Same as self.transpose().

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.T
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.T
array([1, 2, 3, 4])

See also:

transpose

property ua

Return an array filled with ones with the same units as this array

Example

>>> from unyt import km
>>> a = [4, 5, 6]*km
>>> a.unit_array
unyt_array([1, 1, 1], 'km')
>>> print(a + 7*a.unit_array)
[11 12 13] km

property unit_array

Return an array filled with ones with the same units as this array

Example

>>> from unyt import km
>>> a = [4, 5, 6]*km
>>> a.unit_array
unyt_array([1, 1, 1], 'km')
>>> print(a + 7*a.unit_array)
[11 12 13] km

convert_to_comoving()→ None
Convert the internal data to be in comoving units.

96 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

convert_to_physical()→ None
Convert the internal data to be in physical units.

to_physical()

Creates a copy of the data in physical units.

Returns
copy of cosmo_array in physical units

Return type
cosmo_array

to_comoving()

Creates a copy of the data in comoving units.

Returns
copy of cosmo_array in comoving units

Return type
cosmo_array

compatible_with_comoving()

Is this cosmo_array compatible with a comoving cosmo_array?

This is the case if the cosmo_array is comoving, or if the scale factor exponent is 0 (cosmo_factor.a_factor()
== 1)

compatible_with_physical()

Is this cosmo_array compatible with a physical cosmo_array?

This is the case if the cosmo_array is physical, or if the scale factor exponent is 0 (cosmo_factor.a_factor
== 1)

classmethod from_astropy(arr, unit_registry=None, comoving=True, cosmo_factor=None,
compression=None)

Convert an AstroPy “Quantity” to a cosmo_array.

Parameters

• arr (AstroPy Quantity) – The Quantity to convert from.

• unit_registry (yt UnitRegistry, optional) – A yt unit registry to use in the con-
version. If one is not supplied, the default one will be used.

• comoving (bool) – if True then the array is in comoving co-ordinates, and if False then it
is in physical units.

• cosmo_factor (float) – Object to store conversion data between comoving and physical
coordinates

• compression (string) – String describing any compression that was applied to this array
in the hdf5 file.

9.1. swiftsimio package 97

SWIFTsimIO, Release 7.0.0

Example

>>> from astropy.units import kpc
>>> cosmo_array.from_astropy([1, 2, 3] * kpc)
cosmo_array([1., 2., 3.], 'kpc')

classmethod from_pint(arr, unit_registry=None, comoving=True, cosmo_factor=None,
compression=None)

Convert a Pint “Quantity” to a cosmo_array.

Parameters

• arr (Pint Quantity) – The Quantity to convert from.

• unit_registry (yt UnitRegistry, optional) – A yt unit registry to use in the con-
version. If one is not supplied, the default one will be used.

• comoving (bool) – if True then the array is in comoving co-ordinates, and if False then it
is in physical units.

• cosmo_factor (float) – Object to store conversion data between comoving and physical
coordinates

• compression (string) – String describing any compression that was applied to this array
in the hdf5 file.

Examples

>>> from pint import UnitRegistry
>>> import numpy as np
>>> ureg = UnitRegistry()
>>> a = np.arange(4)
>>> b = ureg.Quantity(a, "erg/cm**3")
>>> b
<Quantity([0 1 2 3], 'erg / centimeter ** 3')>
>>> c = cosmo_array.from_pint(b)
>>> c
cosmo_array([0, 1, 2, 3], 'erg/cm**3')

swiftsimio.optional_packages module

Imports of optional packages.

This includes:

• tqdm: progress bars

• scipy.spatial: KDTrees

• numba/cuda: visualisation

swiftsimio.optional_packages.tqdm(x, *args, **kwargs)

swiftsimio.optional_packages.cuda_jit(*args, **kwargs)

98 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

swiftsimio.reader module

This file contains four major objects:

• SWIFTUnits, which is a unit system that can be queried for units (and converts arrays to relevant unyt arrays
when read from the HDF5 file)

• SWIFTMetadata, which contains all of the metadata from the file

• __SWIFTParticleDataset, which contains particle information but should never be directly accessed. Use gener-
ate_dataset to create one of these. The reasoning here is that properties can only be added to the class afterwards,
and not directly in an _instance_ of the class.

• SWIFTDataset, a container class for all of the above.

class swiftsimio.reader.MassTable(base_mass_table: array, mass_units: unyt_quantity)
Bases: object

Extracts a mass table to local variables based on the particle type names.

class swiftsimio.reader.MappingTable(data: ndarray, named_columns_x: List[str], named_columns_y:
List[str], named_columns_x_name: str, named_columns_y_name:
str)

Bases: object

A mapping table from one named column instance to the other. Initially designed for the mapping between dust
and elements.

class swiftsimio.reader.SWIFTUnits(filename)
Bases: object

Generates a unyt system that can then be used with the SWIFT data.

These give the unit mass, length, time, current, and temperature as unyt unit variables in simulation units. I.e.
you can take any value that you get out of the code and multiply it by the appropriate values to get it ‘unyt-ified’
with the correct units.

mass

unit for mass used

Type
float

length

unit for length used

Type
float

time

unit for time used

Type
float

current

unit for current used

Type
float

9.1. swiftsimio package 99

SWIFTsimIO, Release 7.0.0

temperature

unit for temperature used

Type
float

get_unit_dictionary()

Store unit data and metadata

Length 1 arrays are used to store the unit data. This dictionary also contains the metadata information that
connects the unyt objects to the names that are stored in the SWIFT snapshots.

class swiftsimio.reader.SWIFTMetadata(filename, units: SWIFTUnits)
Bases: object

Loads all metadata (apart from Units, those are handled by SWIFTUnits) into dictionaries.

This also does some extra parsing on some well-used metadata.

header: dict

filename: str

units: SWIFTUnits

get_metadata()

Loads the metadata as specified in metadata.metadata_fields.

get_named_column_metadata()

Loads the custom named column metadata (if it exists) from SubgridScheme/NamedColumns.

get_mapping_metadata()

Gets the mappings based on the named columns (must have already been read), from the form:

SubgridScheme/{X}To{Y}Mapping.

Includes a hack of Dust -> Grains that will be deprecated.

postprocess_header()

Some minor postprocessing on the header to local variables.

load_particle_types()

Loads the particle types and metadata into objects:

metadata.<type>_properties

This contains six arrays,

metadata.<type>_properties.field_names metadata.<type>_properties.field_paths meta-
data.<type>_properties.field_units metadata.<type>_properties.field_cosmologies meta-
data.<type>_properties.field_descriptions metadata.<type>_properties.field_compressions

As well as some more information about the particle type.

extract_cosmology()

Creates an astropy.cosmology object from the internal cosmology system.

This will be saved as self.cosmology.

property present_particle_types

The particle types that are present in the file.

100 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

property present_particle_names

The particle _names_ that are present in the simulation.

property code_info

Gets a nicely printed set of code information with:

Name (Git Branch) Git Revision Git Date

property compiler_info

Gets information about the compiler and formats it as:

Compiler Name (Compiler Version) MPI library

property library_info

Gets information about the libraries used and formats it as:

FFTW vFFTW library version GSL vGSL library version HDF5 vHDF5 library version

property hydro_info

Gets information about the hydro scheme and formats it as:

Scheme Kernel function in DimensionD eta = Kernel eta (Kernel target N_ngb N_{ngb}) $C_{rm
CFL}$ = CFL parameter

property viscosity_info

Gets information about the viscosity scheme and formats it as:

Viscosity Model $alpha_{V, 0}$ = Alpha viscosity, ell_V = Viscosity decay length [internal units],
$beta_V$ = Beta viscosity Alpha viscosity (min) < $alpha_V$ < Alpha viscosity (max)

property diffusion_info

Gets information about the diffusion scheme and formats it as:

$lpha_{D, 0}$ = Diffusion alpha, eta_D = Diffusion beta Diffusion alpha (min) < $lpha_D$ < Diffusion
alpha (max)

class swiftsimio.reader.SWIFTParticleTypeMetadata(particle_type: int, particle_name: str, metadata:
SWIFTMetadata, scale_factor: float)

Bases: object

Object that contains the metadata for one particle type.

This, for instance, could be part type 0, or ‘gas’. This will load in the names of all particle datasets, their units,
possible named fields, and their cosmology, and present them for use in the actual i/o routines.

load_metadata(self):

Loads the required metadata.

load_field_names(self):

Loads in the field names.

load_field_units(self):

Loads in the units from each dataset.

load_field_descriptions(self):

Loads in descriptions of the fields for each dataset.

load_field_compressions(self):

Loads in compressions of the fields for each dataset.

9.1. swiftsimio package 101

SWIFTsimIO, Release 7.0.0

load_cosmology(self):

Loads in the field cosmologies.

load_named_columns(self):

Loads the named column data for relevant fields.

load_metadata()

Loads the required metadata.

This includes loading the field names, units and descriptions, as well as the cosmology metadata and any
custom named columns

load_field_names()

Loads in only the field names.

load_field_units()

Loads in the units from each dataset.

load_field_descriptions()

Loads in the text descriptions of the fields for each dataset.

load_field_compressions()

Loads in the string describing the compression filters of the fields for each dataset.

load_cosmology()

Loads in the field cosmologies.

load_named_columns()

Loads the named column data for relevant fields.

swiftsimio.reader.generate_getter(filename, name: str, field: str, unit: unyt_quantity, mask: None |
ndarray, mask_size: int, cosmo_factor: cosmo_factor, description: str,
compression: str, columns: None | IndexExpression = None)

Generates a function that:

a) If self._`name` exists, return it

b) If not, open filename

c) Reads filename[field]

d) Set self._`name`

e) Return self._`name`.

Parameters

• filename (str) – Filename of the HDF5 file that everything will be read from. Used to
generate the HDF5 dataset.

• name (str) – Output name (snake_case) of the field.

• field (str) – Full path of field, including e.g. particle type. Examples include /
PartType0/Velocities.

• unit (unyt.unyt_quantity) – Output unit of the resultant cosmo_array

• mask (None or np.ndarray) – Mask to be used with accelerated.
read_ranges_from_file, i.e. an array of integers that describe ranges to be read
from the file.

• mask_size (int) – Size of the mask if present.

102 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

• cosmo_factor (cosmo_factor) – Cosmology factor object corresponding to this array.

• description (str) – Description (read from HDF5 file) of the data.

• compression (str) – String describing the lossy compression filters that were applied to
the data (read from the HDF5 file).

• columns (np.lib.index_tricks.IndexEpression, optional) – Index expression
corresponding to which columns to read from the numpy array. If not provided, we read
all columns and return an n-dimensional array.

Returns
getter – A callable object that gets the value of the array that has been saved to _name. This
function takes only self from the :obj:__SWIFTParticleDataset class.

Return type
callable

Notes

The major use of this function is for its side effect of setting _name as a member of the class on first read. When
the attribute is accessed, it will be dynamically read from the file, to keep initial memory usage as minimal as
possible.

If the resultant array is modified, it will not be re-read from the file.

swiftsimio.reader.generate_setter(name: str)
Generates a function that sets self._name to the value that is passed to it.

Parameters
name (str) – the name of the attribute to set

Returns
setter – a callable object that sets the attribute specified by name to the value passed to it.

Return type
callable

swiftsimio.reader.generate_deleter(name: str)
Generates a function that destroys self._name (sets it back to None).

Parameters
name (str) – the name of the field to be destroyed

Returns
deleter – callable that destroys name field

Return type
callable

swiftsimio.reader.generate_dataset(particle_metadata: SWIFTParticleTypeMetadata, mask)
Generates a SWIFTParticleDataset _class_ that corresponds to the particle type given.

We _must_ do the following _outside_ of the class itself, as one can assign properties to a _class_ but not _within_
a class dynamically.

Here we loop through all of the possible properties in the metadata file. We then use the builtin property() function
and some generators to create setters and getters for those properties. This will allow them to be accessed from
outside by using SWIFTParticleDataset.name, where the name is, for example, coordinates.

Parameters

9.1. swiftsimio package 103

SWIFTsimIO, Release 7.0.0

• particle_metadata (SWIFTParticleTypeMetadata) – the metadata for the particle type

• mask (SWIFTMask) – the mask object for the dataset

class swiftsimio.reader.SWIFTDataset(filename, mask=None)
Bases: object

A collection object for:

• SWIFTUnits,

• SWIFTMetadata,

• SWIFTParticleDataset

This object, in essence, completely represents a SWIFT snapshot. You can access the different particles as
follows:

• SWIFTDataset.gas.particle_ids

• SWIFTDataset.dark_matter.masses

• SWIFTDataset.gas.smoothing_lengths

These arrays all have units that are determined by the unit system in the file.

The unit system is available as SWIFTDataset.units and the metadata as SWIFTDataset.metadata.

def get_units(self):

Loads the units from the SWIFT snapshot.

def get_metadata(self):

Loads the metadata from the SWIFT snapshot.

def create_particle_datasets(self):

Creates particle datasets for whatever particle types and names are specified in metadata.particle_types.

get_units()

Loads the units from the SWIFT snapshot.

Ordinarily this happens automatically, but you can call this function again if you mess things up.

get_metadata()

Loads the metadata from the SWIFT snapshot.

Ordinarily this happens automatically, but you can call this function again if you mess things up.

create_particle_datasets()

Creates particle datasets for whatever particle types and names are specified in metadata.particle_types.

These can then be accessed using their underscore names, e.g. gas.

swiftsimio.statistics module

Reader for the statistics file.

class swiftsimio.statistics.SWIFTStatisticsFile(filename: str)
Bases: object

SWIFT statistics files (e.g. SFR.txt, energy.txt) reader.

header_names: List[str]

104 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

header_units: Dict[str, unyt_quantity]

header_snake_case_names: List[str]

raw_lines: List[str]

swiftsimio.subset_writer module

Contains functions for reading a subset of a SWIFT dataset and writing it to a new file.

swiftsimio.subset_writer.get_swift_name(name: str)→ str
Returns the particle type name used in SWIFT

Parameters
name (str) – swiftsimio particle name (e.g. gas)

Returns
SWIFT particle type corresponding to name (e.g. PartType0)

Return type
str

swiftsimio.subset_writer.get_dataset_mask(mask: SWIFTMask, dataset_name: str, suffix: str | None =
None)→ ndarray

Return appropriate mask or mask size for given dataset

Parameters

• mask (SWIFTMask) – the mask used to define subset that is written to new snapshot

• dataset_name (str) – the name of the dataset we’re interested in. This is the name from
the hdf5 file (i.e. “PartType0”, rather than “gas”)

• suffix (str, optional) – specify a suffix string to append to dataset underscore name
to return something other than the dataset mask. This is specifically used for returning the
mask size by setting suffix=”_size”, which would return, for example mask.gas_size

Returns
mask for the appropriate dataset

Return type
np.ndarray

swiftsimio.subset_writer.find_datasets(input_file: File, dataset_names=[], path=None, recurse=False)
→ List[str]

Recursively finds all the datasets in the snapshot and writes them to a list

Parameters

• input_file (h5py.File) – hdf5 file handle for snapshot

• dataset_names (list of str, optional) – names of datasets found in the snapshot

• path (str, optional) – the path to the current location in the snapshot

• recurse (bool, optional) – flag to indicate whether we’re recursing or not

Returns
dataset_names – names of datasets in path in input_file

Return type
list of str

9.1. swiftsimio package 105

SWIFTsimIO, Release 7.0.0

swiftsimio.subset_writer.find_links(input_file: File, link_names: List | None = [], link_paths: List | None
= [], path: str | None = None)

Recursively finds all the links in the snapshot and writes them to a list

Parameters

• input_file (h5py.File) – hdf5 file handle for snapshot

• link_names (list of str, optional) – names of links found in the snapshot

• link_paths (list of str, optional) – paths where links found in the snapshot point
to

• path (str, optional) – the path to the current location in the snapshot

Returns
link_names, link_paths – lists of the names and links of paths in input_file

Return type
list of str, list of str

swiftsimio.subset_writer.update_metadata_counts(infile: File, outfile: File, mask: SWIFTMask)
Recalculates the cell particle counts and offsets based on the particles present in the subset

Parameters

• infile (h5py.File) – File handle for input snapshot

• outfile (h5py.File) – File handle for output subset of snapshot

• mask (SWIFTMask) – the mask being used to define subset

swiftsimio.subset_writer.write_metadata(infile: File, outfile: File, links_list: List[str], mask:
SWIFTMask)

Copy over all the metadata from snapshot to output file

Parameters

• infile (h5py.File) – hdf5 file handle for input snapshot

• outfile (h5py.File) – hdf5 file handle for output snapshot

• links_list (list of str) – names of links found in the snapshot

• mask (SWIFTMask) – the mask being used to define subset

swiftsimio.subset_writer.write_datasubset(infile: File, outfile: File, mask: SWIFTMask, dataset_names:
List[str], links_list: List[str])

Writes subset of all datasets contained in snapshot according to specified mask :param infile: hdf5 file handle for
input snapshot :type infile: h5py.File :param outfile: hdf5 file handle for output snapshot :type outfile: h5py.File
:param mask: the mask used to define subset that is written to new snapshot :type mask: SWIFTMask :param
dataset_names: names of datasets found in the snapshot :type dataset_names: list of str :param links_list: names
of links found in the snapshot :type links_list: list of str

swiftsimio.subset_writer.connect_links(outfile: File, links_list: List[str], paths_list: List[str])
Connects up the links to the appropriate path

Parameters

• outfile (h5py.File) – file containing the hdf5 subsnapshot

• links_list (list of str) – list of names of soft links

• paths_list (list of str) – list of paths specifying how to link each soft link

106 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

swiftsimio.subset_writer.write_subset(output_file: str, mask: SWIFTMask)
Writes subset of snapshot according to specified mask to new snapshot file

Parameters

• input_file (str) – path to input snapshot

• output_file (str) – path to output snapshot

• mask (SWIFTMask) – the mask used to define subset that is written to new snapshot

swiftsimio.swiftsnap module

swiftsnap allows you to check the metadata of a SWIFT snapshot easily from the command line. See the -h invocation
for more details.

swiftsimio.swiftsnap.decode(bytestring: bytes)→ str

swiftsimio.swiftsnap.swiftsnap()

swiftsimio.units module

Contains unit systems that may be useful to astronomers. In particular, it contains the cosmo_units which can be
considered Gadget-oid default units, with

• Unit length = Mpc

• Unit velocity = km/s

• Unit mass = 10^10 Msun

• Unit temperature = K

Also contains unit conversion factors, to simplify units wherever possible.

swiftsimio.writer module

Contains functions and objects for creating SWIFT datasets.

Essentially all you want to do is use SWIFTWriterDataset and fill the attributes that are required for each particle type.
More information is available in the README.

swiftsimio.writer.get_dimensions(dimension: <module 'unyt.dimensions' from
'/home/docs/checkouts/readthedocs.org/user_builds/swiftsimio/envs/stable/lib/python3.8/site-
packages/unyt/dimensions.py'>)→ dict

Returns exponents corresponding to base dimensions for given unyt dimensions object

Parameters
dimension (unyt.dimensions) – dimension for which we’re identifying the exponents

Returns
exp_array – array of exponents corresponding to each base dimension

Return type
np.ndarray

9.1. swiftsimio package 107

SWIFTsimIO, Release 7.0.0

Examples

>>> get_dimensions(unyt.dimensions.velocity)
{

"(mass)": 0,
"(length)": 1,
"(time)": -1,
"(temperature)": 0,
"(current)": 0,

}

swiftsimio.writer.generate_getter(name: str)
Generates a function that gets the unyt array for name.

Parameters
name (str) – name of data field

Returns
getter – function that returns unyt array for name

Return type
function

swiftsimio.writer.generate_setter(name: str, dimensions, unit_system: UnitSystem | str)
Generates a function that sets self._name to the value that is passed to it.

Parameters

• name (str) – string to set self._name to

• dimensions (unyt.dimensions) – physical dimension of self._name (for consistency
check)

• unit_system (unyt.UnitSystem or str) – unit system of self._name

Returns
setter – function to set self._name

Return type
function

swiftsimio.writer.generate_deleter(name: str)
Generates a function that destroys self._name (sets it back to None).

Parameters
name (str) – name of object to be destroyed

Returns
deleter – function to delete self._name

Return type
function

swiftsimio.writer.generate_dataset(unit_system: ~unyt.unit_systems.UnitSystem | str, particle_type: int,
unit_fields_generate_units: ~typing.Callable[[...], dict] = <function
generate_units>)

Generates a SWIFTWriterParticleDataset _class_ that corresponds to the particle type given.

We _must_ do the following _outside_ of the class itself, as one can assign properties to a _class_ but not _within_
a class dynamically.

108 Chapter 9. API Documentation

SWIFTsimIO, Release 7.0.0

Here we loop through all of the possible properties in the metadata file. We then use the builtin property() function
and some generators to create setters and getters for those properties. This will allow them to be accessed from
outside by using SWIFTWriterParticleDataset.name, where the name is, for example, coordinates.

Parameters

• unit_system (unyt.UnitSystem or str) – unit system of the dataset

• particle_type (int) – the particle type of the dataset. Numbering convention is the same
as SWIFT, with 0 corresponding to gas, etc. as usual.

• unit_fields_generate_units (callable, optional) – collection of properties in
metadata file for which to create setters and getters

Returns
an empty dataset for the given particle type

Return type
SWIFTWriterParticleDataset

class swiftsimio.writer.SWIFTWriterDataset(unit_system: ~unyt.unit_systems.UnitSystem | str, box_size:
list | ~unyt.array.unyt_quantity, dimension=3,
compress=True, extra_header: None | dict = None,
unit_fields_generate_units: ~typing.Callable[[...], dict] =
<function generate_units>, scale_factor: ~numpy.float32 =
1.0)

Bases: object

The SWIFT writer dataset. This is used to store all particle arrays and do some extra processing before writing
a HDF5 file containing:

• Fully consistent unit system

• All required arrays for SWIFT to start

• Required metadata (all automatic, apart from those required by __init__)

create_particle_datasets()

Creates particle dataset for each particle type in the metadata with associated units

write(filename: str)
Writes the information in the dataset to file.

Parameters
filename (str) – file to write to

9.1. swiftsimio package 109

SWIFTsimIO, Release 7.0.0

110 Chapter 9. API Documentation

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

111

SWIFTsimIO, Release 7.0.0

112 Chapter 10. Indices and tables

CHAPTER

ELEVEN

CITING SWIFTSIMIO

Please cite swiftsimio using the JOSS paper:

@article{Borrow2020,
doi = {10.21105/joss.02430},
url = {https://doi.org/10.21105/joss.02430},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {52},
pages = {2430},
author = {Josh Borrow and Alexei Borrisov},
title = {swiftsimio: A Python library for reading SWIFT data},
journal = {Journal of Open Source Software}

}

If you use any of the subsampled projection backends, we ask that you cite our relevant SPHERIC article. Note that
citing the arXiv version here is recommended as the ADS cannot track conference proceedings well.

@article{Borrow2021,
title={Projecting SPH Particles in Adaptive Environments},
author={Josh Borrow and Ashley J. Kelly},
year={2021},
eprint={2106.05281},
archivePrefix={arXiv},
primaryClass={astro-ph.GA}

}

113

https://joss.theoj.org/papers/10.21105/joss.02430
https://ui.adsabs.harvard.edu/abs/2021arXiv210605281B/abstract

SWIFTsimIO, Release 7.0.0

114 Chapter 11. Citing SWIFTsimIO

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

115

SWIFTsimIO, Release 7.0.0

116 Chapter 12. Indices and tables

PYTHON MODULE INDEX

s
swiftsimio, 51
swiftsimio.accelerated, 81
swiftsimio.conversions, 85
swiftsimio.initial_conditions, 52
swiftsimio.initial_conditions.generate_particles,

52
swiftsimio.masks, 85
swiftsimio.objects, 86
swiftsimio.optional_packages, 98
swiftsimio.reader, 99
swiftsimio.statistics, 104
swiftsimio.subset_writer, 105
swiftsimio.swiftsnap, 107
swiftsimio.units, 107
swiftsimio.visualisation, 52
swiftsimio.visualisation.projection, 68
swiftsimio.visualisation.projection_backends,

52
swiftsimio.visualisation.projection_backends.fast,

52
swiftsimio.visualisation.projection_backends.gpu,

54
swiftsimio.visualisation.projection_backends.histogram,

56
swiftsimio.visualisation.projection_backends.kernels,

58
swiftsimio.visualisation.projection_backends.reference,

59
swiftsimio.visualisation.projection_backends.renormalised,

61
swiftsimio.visualisation.projection_backends.subsampled,

62
swiftsimio.visualisation.projection_backends.subsampled_extreme,

64
swiftsimio.visualisation.rotation, 71
swiftsimio.visualisation.slice, 72
swiftsimio.visualisation.smoothing_length_generation,

76
swiftsimio.visualisation.tools, 66
swiftsimio.visualisation.tools.cmaps, 66
swiftsimio.visualisation.volume_render, 77

swiftsimio.writer, 107

117

SWIFTsimIO, Release 7.0.0

118 Python Module Index

INDEX

A
a_factor (swiftsimio.objects.cosmo_factor property), 87
apply_color_map() (in module swift-

simio.visualisation.tools.cmaps), 66
astype() (swiftsimio.objects.cosmo_array method), 88

B
byteswap() (swiftsimio.objects.cosmo_array method),

89

C
Cmap2D (class in swiftsimio.visualisation.tools.cmaps), 66
code_info (swiftsimio.reader.SWIFTMetadata prop-

erty), 101
color_map_grid (swift-

simio.visualisation.tools.cmaps.Cmap2D
property), 67

colors (swiftsimio.visualisation.tools.cmaps.Cmap2D
attribute), 67

comoving (swiftsimio.objects.cosmo_array attribute), 87
compatible_with_comoving() (swift-

simio.objects.cosmo_array method), 97
compatible_with_physical() (swift-

simio.objects.cosmo_array method), 97
compiler_info (swiftsimio.reader.SWIFTMetadata

property), 101
compress() (swiftsimio.objects.cosmo_array method),

90
compression (swiftsimio.objects.cosmo_array at-

tribute), 87
concatenate_ranges() (in module swift-

simio.accelerated), 82
connect_links() (in module swiftsimio.subset_writer),

106
constrain_mask() (swiftsimio.masks.SWIFTMask

method), 85
constrain_spatial() (swiftsimio.masks.SWIFTMask

method), 85
convert_masks_to_ranges() (swift-

simio.masks.SWIFTMask method), 85
convert_to_comoving() (swift-

simio.objects.cosmo_array method), 96

convert_to_physical() (swift-
simio.objects.cosmo_array method), 96

coordinates (swiftsimio.visualisation.tools.cmaps.Cmap2D
attribute), 67

cosmo_array (class in swiftsimio.objects), 87
cosmo_factor (class in swiftsimio.objects), 86
cosmo_factor (swiftsimio.objects.cosmo_array at-

tribute), 87
create_particle_datasets() (swift-

simio.reader.SWIFTDataset method), 104
create_particle_datasets() (swift-

simio.writer.SWIFTWriterDataset method),
109

cuda_jit() (in module swiftsimio.optional_packages),
98

current (swiftsimio.reader.SWIFTUnits attribute), 99

D
decode() (in module swiftsimio.swiftsnap), 107
diagonal() (swiftsimio.objects.cosmo_array method),

90
diffusion_info (swiftsimio.reader.SWIFTMetadata

property), 101

E
ensure_rgba() (in module swift-

simio.visualisation.tools.cmaps), 66
expand_ranges() (in module swiftsimio.accelerated),

82
extract_cosmology() (swift-

simio.reader.SWIFTMetadata method), 100
extract_ranges_from_chunks() (in module swift-

simio.accelerated), 83

F
filename (swiftsimio.reader.SWIFTMetadata attribute),

100
find_datasets() (in module swiftsimio.subset_writer),

105
find_links() (in module swiftsimio.subset_writer), 105
flatten() (swiftsimio.objects.cosmo_array method), 90

119

SWIFTsimIO, Release 7.0.0

from_astropy() (swiftsimio.objects.cosmo_array class
method), 97

from_pint() (swiftsimio.objects.cosmo_array class
method), 98

G
generate_color_map_grid() (swift-

simio.visualisation.tools.cmaps.Cmap2D
method), 67

generate_color_map_grid() (swift-
simio.visualisation.tools.cmaps.ImageCmap2D
method), 68

generate_color_map_grid() (swift-
simio.visualisation.tools.cmaps.LinearSegmentedCmap2D
method), 67

generate_color_map_grid() (swift-
simio.visualisation.tools.cmaps.LinearSegmentedCmap2DHSV
method), 67

generate_dataset() (in module swiftsimio.reader),
103

generate_dataset() (in module swiftsimio.writer),
108

generate_deleter() (in module swiftsimio.reader),
103

generate_deleter() (in module swiftsimio.writer),
108

generate_getter() (in module swiftsimio.reader), 102
generate_getter() (in module swiftsimio.writer), 108
generate_setter() (in module swiftsimio.reader), 103
generate_setter() (in module swiftsimio.writer), 108
generate_smoothing_lengths() (in module swift-

simio.visualisation.smoothing_length_generation),
76

get_chunk_ranges() (in module swift-
simio.accelerated), 82

get_dataset_mask() (in module swift-
simio.subset_writer), 105

get_dimensions() (in module swiftsimio.writer), 107
get_mapping_metadata() (swift-

simio.reader.SWIFTMetadata method), 100
get_masked_counts_offsets() (swift-

simio.masks.SWIFTMask method), 86
get_metadata() (swiftsimio.reader.SWIFTDataset

method), 104
get_metadata() (swiftsimio.reader.SWIFTMetadata

method), 100
get_named_column_metadata() (swift-

simio.reader.SWIFTMetadata method), 100
get_swift_name() (in module swift-

simio.subset_writer), 105
get_unit_dictionary() (swift-

simio.reader.SWIFTUnits method), 100
get_units() (swiftsimio.reader.SWIFTDataset

method), 104

H
header (swiftsimio.reader.SWIFTMetadata attribute),

100
header_names (swiftsimio.statistics.SWIFTStatisticsFile

attribute), 104
header_snake_case_names (swift-

simio.statistics.SWIFTStatisticsFile attribute),
105

header_units (swiftsimio.statistics.SWIFTStatisticsFile
attribute), 104

hydro_info (swiftsimio.reader.SWIFTMetadata prop-
erty), 101

I
ImageCmap2D (class in swift-

simio.visualisation.tools.cmaps), 67
in_units() (swiftsimio.objects.cosmo_array method),

89
index_dataset() (in module swiftsimio.accelerated),

82
InvalidScaleFactor, 86

K
kernel() (in module swift-

simio.visualisation.projection_backends.gpu),
54

kernel() (in module swiftsimio.visualisation.slice), 72
kernel_double_precision() (in module swift-

simio.visualisation.projection_backends.kernels),
58

kernel_single_precision() (in module swift-
simio.visualisation.projection_backends.kernels),
58

L
length (swiftsimio.reader.SWIFTUnits attribute), 99
library_info (swiftsimio.reader.SWIFTMetadata prop-

erty), 101
LinearSegmentedCmap2D (class in swift-

simio.visualisation.tools.cmaps), 67
LinearSegmentedCmap2DHSV (class in swift-

simio.visualisation.tools.cmaps), 67
list_of_strings_to_arrays() (in module swift-

simio.accelerated), 84
load() (in module swiftsimio), 51
load_cosmology() (swift-

simio.reader.SWIFTParticleTypeMetadata
method), 102

load_field_compressions() (swift-
simio.reader.SWIFTParticleTypeMetadata
method), 102

load_field_descriptions() (swift-
simio.reader.SWIFTParticleTypeMetadata
method), 102

120 Index

SWIFTsimIO, Release 7.0.0

load_field_names() (swift-
simio.reader.SWIFTParticleTypeMetadata
method), 102

load_field_units() (swift-
simio.reader.SWIFTParticleTypeMetadata
method), 102

load_metadata() (swift-
simio.reader.SWIFTParticleTypeMetadata
method), 102

load_named_columns() (swift-
simio.reader.SWIFTParticleTypeMetadata
method), 102

load_particle_types() (swift-
simio.reader.SWIFTMetadata method), 100

load_statistics() (in module swiftsimio), 52

M
MappingTable (class in swiftsimio.reader), 99
mask() (in module swiftsimio), 51
mass (swiftsimio.reader.SWIFTUnits attribute), 99
MassTable (class in swiftsimio.reader), 99
module

swiftsimio, 51
swiftsimio.accelerated, 81
swiftsimio.conversions, 85
swiftsimio.initial_conditions, 52
swiftsimio.initial_conditions.generate_particles,

52
swiftsimio.masks, 85
swiftsimio.objects, 86
swiftsimio.optional_packages, 98
swiftsimio.reader, 99
swiftsimio.statistics, 104
swiftsimio.subset_writer, 105
swiftsimio.swiftsnap, 107
swiftsimio.units, 107
swiftsimio.visualisation, 52
swiftsimio.visualisation.projection, 68
swiftsimio.visualisation.projection_backends,

52
swiftsimio.visualisation.projection_backends.fast,

52
swiftsimio.visualisation.projection_backends.gpu,

54
swiftsimio.visualisation.projection_backends.histogram,

56
swiftsimio.visualisation.projection_backends.kernels,

58
swiftsimio.visualisation.projection_backends.reference,

59
swiftsimio.visualisation.projection_backends.renormalised,

61
swiftsimio.visualisation.projection_backends.subsampled,

62

swiftsimio.visualisation.projection_backends.subsampled_extreme,
64

swiftsimio.visualisation.rotation, 71
swiftsimio.visualisation.slice, 72
swiftsimio.visualisation.smoothing_length_generation,

76
swiftsimio.visualisation.tools, 66
swiftsimio.visualisation.tools.cmaps, 66
swiftsimio.visualisation.volume_render,

77
swiftsimio.writer, 107

N
newbyteorder() (swiftsimio.objects.cosmo_array

method), 91

P
plot() (swiftsimio.visualisation.tools.cmaps.Cmap2D

method), 67
postprocess_header() (swift-

simio.reader.SWIFTMetadata method), 100
present_particle_names (swift-

simio.reader.SWIFTMetadata property),
100

present_particle_types (swift-
simio.reader.SWIFTMetadata property),
100

project_gas() (in module swift-
simio.visualisation.projection), 70

project_gas_pixel_grid() (in module swift-
simio.visualisation.projection), 69

project_pixel_grid() (in module swift-
simio.visualisation.projection), 68

R
ranges_from_array() (in module swift-

simio.accelerated), 81
ravel() (swiftsimio.objects.cosmo_array method), 91
raw_lines (swiftsimio.statistics.SWIFTStatisticsFile at-

tribute), 105
read_ranges_from_file() (in module swift-

simio.accelerated), 83
read_ranges_from_file_chunked() (in module

swiftsimio.accelerated), 83
read_ranges_from_file_unchunked() (in module

swiftsimio.accelerated), 81
redshift (swiftsimio.objects.cosmo_factor property), 87
render_gas() (in module swift-

simio.visualisation.volume_render), 79
render_gas_voxel_grid() (in module swift-

simio.visualisation.volume_render), 79
repeat() (swiftsimio.objects.cosmo_array method), 92
reshape() (swiftsimio.objects.cosmo_array method), 92

Index 121

SWIFTsimIO, Release 7.0.0

rotation_matrix_from_vector() (in module swift-
simio.visualisation.rotation), 71

S
scatter() (in module swift-

simio.visualisation.projection_backends.fast),
52

scatter() (in module swift-
simio.visualisation.projection_backends.gpu),
55

scatter() (in module swift-
simio.visualisation.projection_backends.histogram),
56

scatter() (in module swift-
simio.visualisation.projection_backends.reference),
59

scatter() (in module swift-
simio.visualisation.projection_backends.renormalised),
61

scatter() (in module swift-
simio.visualisation.projection_backends.subsampled),
62

scatter() (in module swift-
simio.visualisation.projection_backends.subsampled_extreme),
64

scatter() (in module swift-
simio.visualisation.volume_render), 77

scatter_gpu() (in module swift-
simio.visualisation.projection_backends.gpu),
54

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.fast),
53

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.gpu),
56

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.histogram),
57

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.reference),
60

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.renormalised),
61

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.subsampled),
63

scatter_parallel() (in module swift-
simio.visualisation.projection_backends.subsampled_extreme),
65

scatter_parallel() (in module swift-
simio.visualisation.volume_render), 78

slice_gas() (in module swiftsimio.visualisation.slice),
75

slice_gas_pixel_grid() (in module swift-
simio.visualisation.slice), 74

slice_scatter() (in module swift-
simio.visualisation.slice), 72

slice_scatter_parallel() (in module swift-
simio.visualisation.slice), 73

swapaxes() (swiftsimio.objects.cosmo_array method),
92

swift_cosmology_to_astropy() (in module swift-
simio.conversions), 85

SWIFTDataset (class in swiftsimio.reader), 104
SWIFTMask (class in swiftsimio.masks), 85
SWIFTMetadata (class in swiftsimio.reader), 100
SWIFTParticleTypeMetadata (class in swift-

simio.reader), 101
swiftsimio

module, 51
swiftsimio.accelerated

module, 81
swiftsimio.conversions

module, 85
swiftsimio.initial_conditions

module, 52
swiftsimio.initial_conditions.generate_particles

module, 52
swiftsimio.masks

module, 85
swiftsimio.objects

module, 86
swiftsimio.optional_packages

module, 98
swiftsimio.reader

module, 99
swiftsimio.statistics

module, 104
swiftsimio.subset_writer

module, 105
swiftsimio.swiftsnap

module, 107
swiftsimio.units

module, 107
swiftsimio.visualisation

module, 52
swiftsimio.visualisation.projection

module, 68
swiftsimio.visualisation.projection_backends

module, 52
swiftsimio.visualisation.projection_backends.fast

module, 52
swiftsimio.visualisation.projection_backends.gpu

module, 54
swiftsimio.visualisation.projection_backends.histogram

122 Index

SWIFTsimIO, Release 7.0.0

module, 56
swiftsimio.visualisation.projection_backends.kernels

module, 58
swiftsimio.visualisation.projection_backends.reference

module, 59
swiftsimio.visualisation.projection_backends.renormalised

module, 61
swiftsimio.visualisation.projection_backends.subsampled

module, 62
swiftsimio.visualisation.projection_backends.subsampled_extreme

module, 64
swiftsimio.visualisation.rotation

module, 71
swiftsimio.visualisation.slice

module, 72
swiftsimio.visualisation.smoothing_length_generation

module, 76
swiftsimio.visualisation.tools

module, 66
swiftsimio.visualisation.tools.cmaps

module, 66
swiftsimio.visualisation.volume_render

module, 77
swiftsimio.writer

module, 107
swiftsnap() (in module swiftsimio.swiftsnap), 107
SWIFTStatisticsFile (class in swiftsimio.statistics),

104
SWIFTUnits (class in swiftsimio.reader), 99
SWIFTWriterDataset (class in swiftsimio.writer), 109

T
T (swiftsimio.objects.cosmo_array property), 95
take() (swiftsimio.objects.cosmo_array method), 92
temperature (swiftsimio.reader.SWIFTUnits attribute),

99
time (swiftsimio.reader.SWIFTUnits attribute), 99
to_comoving() (swiftsimio.objects.cosmo_array

method), 97
to_physical() (swiftsimio.objects.cosmo_array

method), 97
tqdm() (in module swiftsimio.optional_packages), 98
transpose() (swiftsimio.objects.cosmo_array method),

93

U
ua (swiftsimio.objects.cosmo_array property), 96
unit_array (swiftsimio.objects.cosmo_array property),

96
units (swiftsimio.reader.SWIFTMetadata attribute), 100
update_metadata_counts() (in module swift-

simio.subset_writer), 106

V
validate_file() (in module swiftsimio), 51
view() (swiftsimio.objects.cosmo_array method), 93
viscosity_info (swiftsimio.reader.SWIFTMetadata

property), 101

W
write() (swiftsimio.writer.SWIFTWriterDataset

method), 109
write_datasubset() (in module swift-

simio.subset_writer), 106
write_metadata() (in module swift-

simio.subset_writer), 106
write_subset() (in module swiftsimio.subset_writer),

106

Index 123

	Getting Started
	Requirements
	Python packages
	Optional packages

	Installing
	Usage

	Loading Data
	Using metadata
	Reading particle data
	Named columns
	Non-unyt properties
	User-defined particle types

	Masking
	Spatial-only masking
	Example

	Full mask
	Writing subset of snapshot

	Visualisation
	Projection
	Example
	Backends
	Periodic boundaries
	Rotations
	Other particle types
	Lower-level API

	Slices
	Example
	Periodic boundaries
	Rotations
	Lower-level API

	Volume Rendering
	Example
	Periodic boundaries
	Rotations
	Lower-level API

	Tools
	2D Color Maps

	VELOCIraptor Integration
	Example

	Creating Initial Conditions
	Example

	Statistics Files
	Example

	Command-line Utilities
	swiftsnap

	API Documentation
	swiftsimio package
	Subpackages
	swiftsimio.initial_conditions package
	Submodules
	swiftsimio.initial_conditions.generate_particles module

	swiftsimio.visualisation package
	Subpackages
	swiftsimio.visualisation.projection_backends package
	Submodules
	swiftsimio.visualisation.projection_backends.fast module
	swiftsimio.visualisation.projection_backends.gpu module
	swiftsimio.visualisation.projection_backends.histogram module
	swiftsimio.visualisation.projection_backends.kernels module
	swiftsimio.visualisation.projection_backends.reference module
	swiftsimio.visualisation.projection_backends.renormalised module
	swiftsimio.visualisation.projection_backends.subsampled module
	swiftsimio.visualisation.projection_backends.subsampled_extreme module
	swiftsimio.visualisation.tools package
	Submodules
	swiftsimio.visualisation.tools.cmaps module

	Submodules
	swiftsimio.visualisation.projection module
	swiftsimio.visualisation.rotation module
	swiftsimio.visualisation.slice module
	swiftsimio.visualisation.smoothing_length_generation module
	swiftsimio.visualisation.volume_render module

	Submodules
	swiftsimio.accelerated module
	swiftsimio.conversions module
	swiftsimio.masks module
	swiftsimio.objects module
	swiftsimio.optional_packages module
	swiftsimio.reader module
	swiftsimio.statistics module
	swiftsimio.subset_writer module
	swiftsimio.swiftsnap module
	swiftsimio.units module
	swiftsimio.writer module

	Indices and tables
	Citing SWIFTsimIO
	Indices and tables
	Python Module Index
	Index

